| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj101 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj101.1 | ⊢ ∃𝑥𝜑 |
| bnj101.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| bnj101 | ⊢ ∃𝑥𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj101.1 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | bnj101.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | eximii 1764 | 1 ⊢ ∃𝑥𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: bnj1023 30851 bnj1098 30854 bnj1101 30855 bnj1109 30857 bnj1468 30916 bnj907 31035 bnj1110 31050 bnj1118 31052 bnj1128 31058 bnj1145 31061 bnj1172 31069 bnj1174 31071 bnj1176 31073 |
| Copyright terms: Public domain | W3C validator |