Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1118 Structured version   Visualization version   GIF version

Theorem bnj1118 31052
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1118.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1118.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1118.5 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
bnj1118.7 𝐷 = (ω ∖ {∅})
bnj1118.18 (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
bnj1118.19 (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))
bnj1118.26 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
Assertion
Ref Expression
bnj1118 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
Distinct variable groups:   𝐴,𝑖,𝑗,𝑦   𝑦,𝐵   𝐷,𝑗   𝑅,𝑖,𝑗,𝑦   𝑓,𝑖,𝑗,𝑦   𝑖,𝑛,𝑗
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜒(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜃(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜏(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜎(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐴(𝑓,𝑛)   𝐵(𝑓,𝑖,𝑗,𝑛)   𝐷(𝑦,𝑓,𝑖,𝑛)   𝑅(𝑓,𝑛)   𝐾(𝑦,𝑓,𝑖,𝑗,𝑛)   𝑋(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜂′(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜑0(𝑦,𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1118
StepHypRef Expression
1 bnj1118.3 . . . 4 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj1118.7 . . . 4 𝐷 = (ω ∖ {∅})
3 bnj1118.18 . . . 4 (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
4 bnj1118.19 . . . 4 (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))
5 bnj1118.26 . . . 4 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
61, 2, 3, 4, 5bnj1110 31050 . . 3 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))
7 ancl 569 . . 3 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))))
86, 7bnj101 30789 . 2 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)))
9 simpr2 1068 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑖 = suc 𝑗)
101bnj1254 30880 . . . . . . 7 (𝜒𝜓)
11103ad2ant3 1084 . . . . . 6 ((𝜃𝜏𝜒) → 𝜓)
1211ad2antrl 764 . . . . 5 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝜓)
1312adantr 481 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝜓)
141bnj1232 30874 . . . . . . . . 9 (𝜒𝑛𝐷)
15143ad2ant3 1084 . . . . . . . 8 ((𝜃𝜏𝜒) → 𝑛𝐷)
1615ad2antrl 764 . . . . . . 7 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝑛𝐷)
1716adantr 481 . . . . . 6 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑛𝐷)
18 simpr1 1067 . . . . . 6 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑗𝑛)
192bnj923 30838 . . . . . . . 8 (𝑛𝐷𝑛 ∈ ω)
2019anim1i 592 . . . . . . 7 ((𝑛𝐷𝑗𝑛) → (𝑛 ∈ ω ∧ 𝑗𝑛))
2120ancomd 467 . . . . . 6 ((𝑛𝐷𝑗𝑛) → (𝑗𝑛𝑛 ∈ ω))
2217, 18, 21syl2anc 693 . . . . 5 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑗𝑛𝑛 ∈ ω))
23 elnn 7075 . . . . 5 ((𝑗𝑛𝑛 ∈ ω) → 𝑗 ∈ ω)
2422, 23syl 17 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑗 ∈ ω)
254bnj1232 30874 . . . . . 6 (𝜑0𝑖𝑛)
2625adantl 482 . . . . 5 (((𝜃𝜏𝜒) ∧ 𝜑0) → 𝑖𝑛)
2726ad2antlr 763 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑖𝑛)
289, 13, 24, 27bnj951 30846 . . 3 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛))
29 bnj1118.5 . . . . . . 7 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
3029simp2bi 1077 . . . . . 6 (𝜏 → TrFo(𝐵, 𝐴, 𝑅))
31303ad2ant2 1083 . . . . 5 ((𝜃𝜏𝜒) → TrFo(𝐵, 𝐴, 𝑅))
3231ad2antrl 764 . . . 4 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → TrFo(𝐵, 𝐴, 𝑅))
33 simp3 1063 . . . 4 ((𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵) → (𝑓𝑗) ⊆ 𝐵)
3432, 33anim12i 590 . . 3 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → ( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵))
35 bnj256 30772 . . . . 5 ((𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛) ↔ ((𝑖 = suc 𝑗𝜓) ∧ (𝑗 ∈ ω ∧ 𝑖𝑛)))
36 bnj1118.2 . . . . . . . . . 10 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3736bnj1112 31051 . . . . . . . . 9 (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
3837biimpi 206 . . . . . . . 8 (𝜓 → ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
393819.21bi 2059 . . . . . . 7 (𝜓 → ((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
40 eleq1 2689 . . . . . . . . 9 (𝑖 = suc 𝑗 → (𝑖𝑛 ↔ suc 𝑗𝑛))
4140anbi2d 740 . . . . . . . 8 (𝑖 = suc 𝑗 → ((𝑗 ∈ ω ∧ 𝑖𝑛) ↔ (𝑗 ∈ ω ∧ suc 𝑗𝑛)))
42 fveq2 6191 . . . . . . . . 9 (𝑖 = suc 𝑗 → (𝑓𝑖) = (𝑓‘suc 𝑗))
4342eqeq1d 2624 . . . . . . . 8 (𝑖 = suc 𝑗 → ((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
4441, 43imbi12d 334 . . . . . . 7 (𝑖 = suc 𝑗 → (((𝑗 ∈ ω ∧ 𝑖𝑛) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
4539, 44syl5ibr 236 . . . . . 6 (𝑖 = suc 𝑗 → (𝜓 → ((𝑗 ∈ ω ∧ 𝑖𝑛) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
4645imp31 448 . . . . 5 (((𝑖 = suc 𝑗𝜓) ∧ (𝑗 ∈ ω ∧ 𝑖𝑛)) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))
4735, 46sylbi 207 . . . 4 ((𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))
48 df-bnj19 30763 . . . . . . 7 ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑦𝐵 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
49 ssralv 3666 . . . . . . 7 ((𝑓𝑗) ⊆ 𝐵 → (∀𝑦𝐵 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵 → ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵))
5048, 49syl5bi 232 . . . . . 6 ((𝑓𝑗) ⊆ 𝐵 → ( TrFo(𝐵, 𝐴, 𝑅) → ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵))
5150impcom 446 . . . . 5 (( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵) → ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
52 iunss 4561 . . . . 5 ( 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵 ↔ ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
5351, 52sylibr 224 . . . 4 (( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵) → 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
54 sseq1 3626 . . . . 5 ((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) → ((𝑓𝑖) ⊆ 𝐵 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵))
5554biimpar 502 . . . 4 (((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ∧ 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) ⊆ 𝐵)
5647, 53, 55syl2an 494 . . 3 (((𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛) ∧ ( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑓𝑖) ⊆ 𝐵)
5728, 34, 56syl2anc 693 . 2 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑓𝑖) ⊆ 𝐵)
588, 57bnj1023 30851 1 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  wss 3574  c0 3915  {csn 4177   ciun 4520   class class class wbr 4653   E cep 5028  dom cdm 5114  suc csuc 5725   Fn wfn 5883  cfv 5888  ωcom 7065  w-bnj17 30752   predc-bnj14 30754   TrFow-bnj19 30762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fn 5891  df-fv 5896  df-om 7066  df-bnj17 30753  df-bnj19 30763
This theorem is referenced by:  bnj1030  31055
  Copyright terms: Public domain W3C validator