Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1123 Structured version   Visualization version   GIF version

Theorem bnj1123 31054
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1123.4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1123.3 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1123.1 (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
bnj1123.2 (𝜂′[𝑗 / 𝑖]𝜂)
Assertion
Ref Expression
bnj1123 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑓,𝑖   𝑖,𝑗   𝑖,𝑛   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜂(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐴(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐵(𝑦,𝑓,𝑗,𝑛)   𝐷(𝑦,𝑓,𝑗,𝑛)   𝑅(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐾(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜂′(𝑦,𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1123
StepHypRef Expression
1 bnj1123.2 . 2 (𝜂′[𝑗 / 𝑖]𝜂)
2 bnj1123.1 . . 3 (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
32sbcbii 3491 . 2 ([𝑗 / 𝑖]𝜂[𝑗 / 𝑖]((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))
4 vex 3203 . . 3 𝑗 ∈ V
5 bnj1123.3 . . . . . . . 8 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
6 nfcv 2764 . . . . . . . . . 10 𝑖𝐷
7 nfv 1843 . . . . . . . . . . 11 𝑖 𝑓 Fn 𝑛
8 nfv 1843 . . . . . . . . . . 11 𝑖𝜑
9 bnj1123.4 . . . . . . . . . . . . 13 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
109bnj1095 30852 . . . . . . . . . . . 12 (𝜓 → ∀𝑖𝜓)
1110nf5i 2024 . . . . . . . . . . 11 𝑖𝜓
127, 8, 11nf3an 1831 . . . . . . . . . 10 𝑖(𝑓 Fn 𝑛𝜑𝜓)
136, 12nfrex 3007 . . . . . . . . 9 𝑖𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)
1413nfab 2769 . . . . . . . 8 𝑖{𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
155, 14nfcxfr 2762 . . . . . . 7 𝑖𝐾
1615nfcri 2758 . . . . . 6 𝑖 𝑓𝐾
17 nfv 1843 . . . . . 6 𝑖 𝑗 ∈ dom 𝑓
1816, 17nfan 1828 . . . . 5 𝑖(𝑓𝐾𝑗 ∈ dom 𝑓)
19 nfv 1843 . . . . 5 𝑖(𝑓𝑗) ⊆ 𝐵
2018, 19nfim 1825 . . . 4 𝑖((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵)
21 eleq1 2689 . . . . . 6 (𝑖 = 𝑗 → (𝑖 ∈ dom 𝑓𝑗 ∈ dom 𝑓))
2221anbi2d 740 . . . . 5 (𝑖 = 𝑗 → ((𝑓𝐾𝑖 ∈ dom 𝑓) ↔ (𝑓𝐾𝑗 ∈ dom 𝑓)))
23 fveq2 6191 . . . . . 6 (𝑖 = 𝑗 → (𝑓𝑖) = (𝑓𝑗))
2423sseq1d 3632 . . . . 5 (𝑖 = 𝑗 → ((𝑓𝑖) ⊆ 𝐵 ↔ (𝑓𝑗) ⊆ 𝐵))
2522, 24imbi12d 334 . . . 4 (𝑖 = 𝑗 → (((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵) ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵)))
2620, 25sbciegf 3467 . . 3 (𝑗 ∈ V → ([𝑗 / 𝑖]((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵) ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵)))
274, 26ax-mp 5 . 2 ([𝑗 / 𝑖]((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵) ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
281, 3, 273bitri 286 1 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200  [wsbc 3435  wss 3574   ciun 4520  dom cdm 5114  suc csuc 5725   Fn wfn 5883  cfv 5888  ωcom 7065   predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  bnj1030  31055
  Copyright terms: Public domain W3C validator