| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1123 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1123.4 |
|
| bnj1123.3 |
|
| bnj1123.1 |
|
| bnj1123.2 |
|
| Ref | Expression |
|---|---|
| bnj1123 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1123.2 |
. 2
| |
| 2 | bnj1123.1 |
. . 3
| |
| 3 | 2 | sbcbii 3491 |
. 2
|
| 4 | vex 3203 |
. . 3
| |
| 5 | bnj1123.3 |
. . . . . . . 8
| |
| 6 | nfcv 2764 |
. . . . . . . . . 10
| |
| 7 | nfv 1843 |
. . . . . . . . . . 11
| |
| 8 | nfv 1843 |
. . . . . . . . . . 11
| |
| 9 | bnj1123.4 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | bnj1095 30852 |
. . . . . . . . . . . 12
|
| 11 | 10 | nf5i 2024 |
. . . . . . . . . . 11
|
| 12 | 7, 8, 11 | nf3an 1831 |
. . . . . . . . . 10
|
| 13 | 6, 12 | nfrex 3007 |
. . . . . . . . 9
|
| 14 | 13 | nfab 2769 |
. . . . . . . 8
|
| 15 | 5, 14 | nfcxfr 2762 |
. . . . . . 7
|
| 16 | 15 | nfcri 2758 |
. . . . . 6
|
| 17 | nfv 1843 |
. . . . . 6
| |
| 18 | 16, 17 | nfan 1828 |
. . . . 5
|
| 19 | nfv 1843 |
. . . . 5
| |
| 20 | 18, 19 | nfim 1825 |
. . . 4
|
| 21 | eleq1 2689 |
. . . . . 6
| |
| 22 | 21 | anbi2d 740 |
. . . . 5
|
| 23 | fveq2 6191 |
. . . . . 6
| |
| 24 | 23 | sseq1d 3632 |
. . . . 5
|
| 25 | 22, 24 | imbi12d 334 |
. . . 4
|
| 26 | 20, 25 | sbciegf 3467 |
. . 3
|
| 27 | 4, 26 | ax-mp 5 |
. 2
|
| 28 | 1, 3, 27 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: bnj1030 31055 |
| Copyright terms: Public domain | W3C validator |