MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciegf Structured version   Visualization version   GIF version

Theorem sbciegf 3467
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
sbciegf.1 𝑥𝜓
sbciegf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbciegf (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbciegf
StepHypRef Expression
1 sbciegf.1 . 2 𝑥𝜓
2 sbciegf.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32ax-gen 1722 . 2 𝑥(𝑥 = 𝐴 → (𝜑𝜓))
4 sbciegft 3466 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
51, 3, 4mp3an23 1416 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481   = wceq 1483  wnf 1708  wcel 1990  [wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by:  sbcieg  3468  opelopabgf  4995  opelopabf  5000  eqerlem  7776  iunxsngf  29375  bnj919  30837  bnj1464  30914  bnj1123  31054  bnj1373  31098  poimirlem25  33434  sbccomieg  37357  aomclem6  37629  fveqsb  38657  rexsngf  39220
  Copyright terms: Public domain W3C validator