![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1521 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1521.1 | ⊢ (𝜒 → ∃𝑥 ∈ 𝐵 𝜑) |
bnj1521.2 | ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑)) |
bnj1521.3 | ⊢ (𝜒 → ∀𝑥𝜒) |
Ref | Expression |
---|---|
bnj1521 | ⊢ (𝜒 → ∃𝑥𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1521.1 | . . 3 ⊢ (𝜒 → ∃𝑥 ∈ 𝐵 𝜑) | |
2 | 1 | bnj1196 30865 | . 2 ⊢ (𝜒 → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) |
3 | bnj1521.2 | . 2 ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | bnj1521.3 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
5 | 2, 3, 4 | bnj1345 30895 | 1 ⊢ (𝜒 → ∃𝑥𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1037 ∀wal 1481 ∃wex 1704 ∈ wcel 1990 ∃wrex 2913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-ex 1705 df-nf 1710 df-rex 2918 |
This theorem is referenced by: bnj1204 31080 bnj1311 31092 bnj1398 31102 bnj1408 31104 bnj1450 31118 bnj1312 31126 bnj1501 31135 bnj1523 31139 |
Copyright terms: Public domain | W3C validator |