Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj554 Structured version   Visualization version   GIF version

Theorem bnj554 30969
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj554.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj554.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj554.21 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj554.22 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj554.23 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj554.24 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
Assertion
Ref Expression
bnj554 ((𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
Distinct variable groups:   𝑦,𝐺   𝑦,𝑖   𝑦,𝑝
Allowed substitution hints:   𝜂(𝑦,𝑖,𝑚,𝑛,𝑝)   𝜁(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑖,𝑚,𝑛,𝑝)   𝐾(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑦,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj554
StepHypRef Expression
1 bnj554.19 . . 3 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
21bnj1254 30880 . 2 (𝜂𝑚 = suc 𝑝)
3 bnj554.20 . . 3 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
43simp3bi 1078 . 2 (𝜁𝑚 = suc 𝑖)
5 simpr 477 . . 3 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑚 = suc 𝑖)
6 bnj551 30812 . . 3 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)
7 fveq2 6191 . . . 4 (𝑚 = suc 𝑖 → (𝐺𝑚) = (𝐺‘suc 𝑖))
8 fveq2 6191 . . . . 5 (𝑝 = 𝑖 → (𝐺𝑝) = (𝐺𝑖))
9 iuneq1 4534 . . . . . 6 ((𝐺𝑝) = (𝐺𝑖) → 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
10 bnj554.24 . . . . . 6 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
11 bnj554.23 . . . . . 6 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
129, 10, 113eqtr4g 2681 . . . . 5 ((𝐺𝑝) = (𝐺𝑖) → 𝐿 = 𝐾)
138, 12syl 17 . . . 4 (𝑝 = 𝑖𝐿 = 𝐾)
147, 13eqeqan12d 2638 . . 3 ((𝑚 = suc 𝑖𝑝 = 𝑖) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
155, 6, 14syl2anc 693 . 2 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
162, 4, 15syl2an 494 1 ((𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   ciun 4520  suc csuc 5725  cfv 5888  ωcom 7065  w-bnj17 30752   predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-eprel 5029  df-fr 5073  df-suc 5729  df-iota 5851  df-fv 5896  df-bnj17 30753
This theorem is referenced by:  bnj558  30972
  Copyright terms: Public domain W3C validator