Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj554 Structured version   Visualization version   Unicode version

Theorem bnj554 30969
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj554.19  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
bnj554.20  |-  ( ze  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i ) )
bnj554.21  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj554.22  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
bnj554.23  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj554.24  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
Assertion
Ref Expression
bnj554  |-  ( ( et  /\  ze )  ->  ( ( G `  m )  =  L  <-> 
( G `  suc  i )  =  K ) )
Distinct variable groups:    y, G    y, i    y, p
Allowed substitution hints:    et( y, i, m, n, p)    ze( y,
i, m, n, p)    A( y, i, m, n, p)    D( y, i, m, n, p)    R( y,
i, m, n, p)    G( i, m, n, p)    K( y, i, m, n, p)    L( y, i, m, n, p)

Proof of Theorem bnj554
StepHypRef Expression
1 bnj554.19 . . 3  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
21bnj1254 30880 . 2  |-  ( et 
->  m  =  suc  p )
3 bnj554.20 . . 3  |-  ( ze  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i ) )
43simp3bi 1078 . 2  |-  ( ze 
->  m  =  suc  i )
5 simpr 477 . . 3  |-  ( ( m  =  suc  p  /\  m  =  suc  i )  ->  m  =  suc  i )
6 bnj551 30812 . . 3  |-  ( ( m  =  suc  p  /\  m  =  suc  i )  ->  p  =  i )
7 fveq2 6191 . . . 4  |-  ( m  =  suc  i  -> 
( G `  m
)  =  ( G `
 suc  i )
)
8 fveq2 6191 . . . . 5  |-  ( p  =  i  ->  ( G `  p )  =  ( G `  i ) )
9 iuneq1 4534 . . . . . 6  |-  ( ( G `  p )  =  ( G `  i )  ->  U_ y  e.  ( G `  p
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
10 bnj554.24 . . . . . 6  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
11 bnj554.23 . . . . . 6  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
129, 10, 113eqtr4g 2681 . . . . 5  |-  ( ( G `  p )  =  ( G `  i )  ->  L  =  K )
138, 12syl 17 . . . 4  |-  ( p  =  i  ->  L  =  K )
147, 13eqeqan12d 2638 . . 3  |-  ( ( m  =  suc  i  /\  p  =  i
)  ->  ( ( G `  m )  =  L  <->  ( G `  suc  i )  =  K ) )
155, 6, 14syl2anc 693 . 2  |-  ( ( m  =  suc  p  /\  m  =  suc  i )  ->  (
( G `  m
)  =  L  <->  ( G `  suc  i )  =  K ) )
162, 4, 15syl2an 494 1  |-  ( ( et  /\  ze )  ->  ( ( G `  m )  =  L  <-> 
( G `  suc  i )  =  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   U_ciun 4520   suc csuc 5725   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-eprel 5029  df-fr 5073  df-suc 5729  df-iota 5851  df-fv 5896  df-bnj17 30753
This theorem is referenced by:  bnj558  30972
  Copyright terms: Public domain W3C validator