| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj832 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj832.1 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓)) |
| bnj832.2 | ⊢ (𝜑 → 𝜏) |
| Ref | Expression |
|---|---|
| bnj832 | ⊢ (𝜂 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj832.1 | . 2 ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓)) | |
| 2 | bnj832.2 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 3 | 2 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 4 | 1, 3 | sylbi 207 | 1 ⊢ (𝜂 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: bnj1379 30901 bnj605 30977 bnj908 31001 bnj1145 31061 bnj1442 31117 bnj1450 31118 bnj1489 31124 bnj1501 31135 bnj1523 31139 |
| Copyright terms: Public domain | W3C validator |