Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1379 Structured version   Visualization version   GIF version

Theorem bnj1379 30901
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1379.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1379.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1379.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
bnj1379.5 (𝜒 ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
bnj1379.6 (𝜃 ↔ (𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
bnj1379.7 (𝜏 ↔ (𝜃𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
Assertion
Ref Expression
bnj1379 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥,𝑦,𝑧   𝑥,𝐷   𝜑,𝑔   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓)   𝜓(𝑓,𝑔)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑔)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑔)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐷(𝑦,𝑧,𝑓,𝑔)

Proof of Theorem bnj1379
StepHypRef Expression
1 bnj1379.3 . . . . 5 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
2 bnj1379.1 . . . . . . . 8 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
32bnj1095 30852 . . . . . . 7 (𝜑 → ∀𝑓𝜑)
43nf5i 2024 . . . . . 6 𝑓𝜑
5 nfra1 2941 . . . . . 6 𝑓𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)
64, 5nfan 1828 . . . . 5 𝑓(𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
71, 6nfxfr 1779 . . . 4 𝑓𝜓
82bnj946 30845 . . . . . . . 8 (𝜑 ↔ ∀𝑓(𝑓𝐴 → Fun 𝑓))
98biimpi 206 . . . . . . 7 (𝜑 → ∀𝑓(𝑓𝐴 → Fun 𝑓))
10919.21bi 2059 . . . . . 6 (𝜑 → (𝑓𝐴 → Fun 𝑓))
111, 10bnj832 30828 . . . . 5 (𝜓 → (𝑓𝐴 → Fun 𝑓))
12 funrel 5905 . . . . 5 (Fun 𝑓 → Rel 𝑓)
1311, 12syl6 35 . . . 4 (𝜓 → (𝑓𝐴 → Rel 𝑓))
147, 13ralrimi 2957 . . 3 (𝜓 → ∀𝑓𝐴 Rel 𝑓)
15 reluni 5241 . . 3 (Rel 𝐴 ↔ ∀𝑓𝐴 Rel 𝑓)
1614, 15sylibr 224 . 2 (𝜓 → Rel 𝐴)
17 bnj1379.5 . . . . . 6 (𝜒 ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
18 eluni2 4440 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑓𝐴𝑥, 𝑦⟩ ∈ 𝑓)
1918biimpi 206 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑓𝐴𝑥, 𝑦⟩ ∈ 𝑓)
2019bnj1196 30865 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑓(𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
2117, 20bnj836 30830 . . . . . . . . 9 (𝜒 → ∃𝑓(𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
22 bnj1379.6 . . . . . . . . 9 (𝜃 ↔ (𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
23 nfv 1843 . . . . . . . . . . . 12 𝑓𝑥, 𝑦⟩ ∈ 𝐴
24 nfv 1843 . . . . . . . . . . . 12 𝑓𝑥, 𝑧⟩ ∈ 𝐴
257, 23, 24nf3an 1831 . . . . . . . . . . 11 𝑓(𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
2617, 25nfxfr 1779 . . . . . . . . . 10 𝑓𝜒
2726nf5ri 2065 . . . . . . . . 9 (𝜒 → ∀𝑓𝜒)
2821, 22, 27bnj1345 30895 . . . . . . . 8 (𝜒 → ∃𝑓𝜃)
2917simp3bi 1078 . . . . . . . . . . . . 13 (𝜒 → ⟨𝑥, 𝑧⟩ ∈ 𝐴)
3022, 29bnj835 30829 . . . . . . . . . . . 12 (𝜃 → ⟨𝑥, 𝑧⟩ ∈ 𝐴)
31 eluni2 4440 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑔𝐴𝑥, 𝑧⟩ ∈ 𝑔)
3231biimpi 206 . . . . . . . . . . . . 13 (⟨𝑥, 𝑧⟩ ∈ 𝐴 → ∃𝑔𝐴𝑥, 𝑧⟩ ∈ 𝑔)
3332bnj1196 30865 . . . . . . . . . . . 12 (⟨𝑥, 𝑧⟩ ∈ 𝐴 → ∃𝑔(𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
3430, 33syl 17 . . . . . . . . . . 11 (𝜃 → ∃𝑔(𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
35 bnj1379.7 . . . . . . . . . . 11 (𝜏 ↔ (𝜃𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
36 nfv 1843 . . . . . . . . . . . . . . . . . 18 𝑔𝜑
37 nfra2 2946 . . . . . . . . . . . . . . . . . 18 𝑔𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)
3836, 37nfan 1828 . . . . . . . . . . . . . . . . 17 𝑔(𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
391, 38nfxfr 1779 . . . . . . . . . . . . . . . 16 𝑔𝜓
40 nfv 1843 . . . . . . . . . . . . . . . 16 𝑔𝑥, 𝑦⟩ ∈ 𝐴
41 nfv 1843 . . . . . . . . . . . . . . . 16 𝑔𝑥, 𝑧⟩ ∈ 𝐴
4239, 40, 41nf3an 1831 . . . . . . . . . . . . . . 15 𝑔(𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
4317, 42nfxfr 1779 . . . . . . . . . . . . . 14 𝑔𝜒
44 nfv 1843 . . . . . . . . . . . . . 14 𝑔 𝑓𝐴
45 nfv 1843 . . . . . . . . . . . . . 14 𝑔𝑥, 𝑦⟩ ∈ 𝑓
4643, 44, 45nf3an 1831 . . . . . . . . . . . . 13 𝑔(𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓)
4722, 46nfxfr 1779 . . . . . . . . . . . 12 𝑔𝜃
4847nf5ri 2065 . . . . . . . . . . 11 (𝜃 → ∀𝑔𝜃)
4934, 35, 48bnj1345 30895 . . . . . . . . . 10 (𝜃 → ∃𝑔𝜏)
501simprbi 480 . . . . . . . . . . . . . . . . . 18 (𝜓 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5117, 50bnj835 30829 . . . . . . . . . . . . . . . . 17 (𝜒 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5222, 51bnj835 30829 . . . . . . . . . . . . . . . 16 (𝜃 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5335, 52bnj835 30829 . . . . . . . . . . . . . . 15 (𝜏 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5422, 35bnj1219 30871 . . . . . . . . . . . . . . 15 (𝜏𝑓𝐴)
5553, 54bnj1294 30888 . . . . . . . . . . . . . 14 (𝜏 → ∀𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5635simp2bi 1077 . . . . . . . . . . . . . 14 (𝜏𝑔𝐴)
5755, 56bnj1294 30888 . . . . . . . . . . . . 13 (𝜏 → (𝑓𝐷) = (𝑔𝐷))
5857fveq1d 6193 . . . . . . . . . . . 12 (𝜏 → ((𝑓𝐷)‘𝑥) = ((𝑔𝐷)‘𝑥))
5922simp3bi 1078 . . . . . . . . . . . . . . . . 17 (𝜃 → ⟨𝑥, 𝑦⟩ ∈ 𝑓)
6035, 59bnj835 30829 . . . . . . . . . . . . . . . 16 (𝜏 → ⟨𝑥, 𝑦⟩ ∈ 𝑓)
61 vex 3203 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
62 vex 3203 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
6361, 62opeldm 5328 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ 𝑓𝑥 ∈ dom 𝑓)
6460, 63syl 17 . . . . . . . . . . . . . . 15 (𝜏𝑥 ∈ dom 𝑓)
65 vex 3203 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
6661, 65opeldm 5328 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑧⟩ ∈ 𝑔𝑥 ∈ dom 𝑔)
6735, 66bnj837 30831 . . . . . . . . . . . . . . 15 (𝜏𝑥 ∈ dom 𝑔)
6864, 67elind 3798 . . . . . . . . . . . . . 14 (𝜏𝑥 ∈ (dom 𝑓 ∩ dom 𝑔))
69 bnj1379.2 . . . . . . . . . . . . . 14 𝐷 = (dom 𝑓 ∩ dom 𝑔)
7068, 69syl6eleqr 2712 . . . . . . . . . . . . 13 (𝜏𝑥𝐷)
71 fvres 6207 . . . . . . . . . . . . 13 (𝑥𝐷 → ((𝑓𝐷)‘𝑥) = (𝑓𝑥))
7270, 71syl 17 . . . . . . . . . . . 12 (𝜏 → ((𝑓𝐷)‘𝑥) = (𝑓𝑥))
73 fvres 6207 . . . . . . . . . . . . 13 (𝑥𝐷 → ((𝑔𝐷)‘𝑥) = (𝑔𝑥))
7470, 73syl 17 . . . . . . . . . . . 12 (𝜏 → ((𝑔𝐷)‘𝑥) = (𝑔𝑥))
7558, 72, 743eqtr3d 2664 . . . . . . . . . . 11 (𝜏 → (𝑓𝑥) = (𝑔𝑥))
762biimpi 206 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑓𝐴 Fun 𝑓)
771, 76bnj832 30828 . . . . . . . . . . . . . . . 16 (𝜓 → ∀𝑓𝐴 Fun 𝑓)
7817, 77bnj835 30829 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑓𝐴 Fun 𝑓)
7922, 78bnj835 30829 . . . . . . . . . . . . . 14 (𝜃 → ∀𝑓𝐴 Fun 𝑓)
8035, 79bnj835 30829 . . . . . . . . . . . . 13 (𝜏 → ∀𝑓𝐴 Fun 𝑓)
8180, 54bnj1294 30888 . . . . . . . . . . . 12 (𝜏 → Fun 𝑓)
82 funopfv 6235 . . . . . . . . . . . 12 (Fun 𝑓 → (⟨𝑥, 𝑦⟩ ∈ 𝑓 → (𝑓𝑥) = 𝑦))
8381, 60, 82sylc 65 . . . . . . . . . . 11 (𝜏 → (𝑓𝑥) = 𝑦)
84 funeq 5908 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
8584cbvralv 3171 . . . . . . . . . . . . . 14 (∀𝑓𝐴 Fun 𝑓 ↔ ∀𝑔𝐴 Fun 𝑔)
8680, 85sylib 208 . . . . . . . . . . . . 13 (𝜏 → ∀𝑔𝐴 Fun 𝑔)
8786, 56bnj1294 30888 . . . . . . . . . . . 12 (𝜏 → Fun 𝑔)
8835simp3bi 1078 . . . . . . . . . . . 12 (𝜏 → ⟨𝑥, 𝑧⟩ ∈ 𝑔)
89 funopfv 6235 . . . . . . . . . . . 12 (Fun 𝑔 → (⟨𝑥, 𝑧⟩ ∈ 𝑔 → (𝑔𝑥) = 𝑧))
9087, 88, 89sylc 65 . . . . . . . . . . 11 (𝜏 → (𝑔𝑥) = 𝑧)
9175, 83, 903eqtr3d 2664 . . . . . . . . . 10 (𝜏𝑦 = 𝑧)
9249, 91bnj593 30815 . . . . . . . . 9 (𝜃 → ∃𝑔 𝑦 = 𝑧)
9392bnj937 30842 . . . . . . . 8 (𝜃𝑦 = 𝑧)
9428, 93bnj593 30815 . . . . . . 7 (𝜒 → ∃𝑓 𝑦 = 𝑧)
9594bnj937 30842 . . . . . 6 (𝜒𝑦 = 𝑧)
9617, 95sylbir 225 . . . . 5 ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)
97963expib 1268 . . . 4 (𝜓 → ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
9897alrimivv 1856 . . 3 (𝜓 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
9998alrimiv 1855 . 2 (𝜓 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
100 dffun4 5900 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
10116, 99, 100sylanbrc 698 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  cin 3573  cop 4183   cuni 4436  dom cdm 5114  cres 5116  Rel wrel 5119  Fun wfun 5882  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  bnj1383  30902
  Copyright terms: Public domain W3C validator