Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj92 Structured version   Visualization version   GIF version

Theorem bnj92 30932
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj92.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj92.2 𝑍 ∈ V
Assertion
Ref Expression
bnj92 ([𝑍 / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑍 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑛   𝑅,𝑛   𝑖,𝑍   𝑓,𝑛   𝑖,𝑛   𝑦,𝑛
Allowed substitution hints:   𝜓(𝑦,𝑓,𝑖,𝑛)   𝐴(𝑦,𝑓,𝑖)   𝑅(𝑦,𝑓,𝑖)   𝑍(𝑦,𝑓,𝑛)

Proof of Theorem bnj92
StepHypRef Expression
1 bnj92.1 . . 3 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
21sbcbii 3491 . 2 ([𝑍 / 𝑛]𝜓[𝑍 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj92.2 . . 3 𝑍 ∈ V
43bnj538 30809 . 2 ([𝑍 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω [𝑍 / 𝑛](suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5 sbcimg 3477 . . . . 5 (𝑍 ∈ V → ([𝑍 / 𝑛](suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝑍 / 𝑛]suc 𝑖𝑛[𝑍 / 𝑛](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
63, 5ax-mp 5 . . . 4 ([𝑍 / 𝑛](suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝑍 / 𝑛]suc 𝑖𝑛[𝑍 / 𝑛](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
7 sbcel2gv 3496 . . . . . 6 (𝑍 ∈ V → ([𝑍 / 𝑛]suc 𝑖𝑛 ↔ suc 𝑖𝑍))
83, 7ax-mp 5 . . . . 5 ([𝑍 / 𝑛]suc 𝑖𝑛 ↔ suc 𝑖𝑍)
93bnj525 30807 . . . . 5 ([𝑍 / 𝑛](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
108, 9imbi12i 340 . . . 4 (([𝑍 / 𝑛]suc 𝑖𝑛[𝑍 / 𝑛](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑍 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
116, 10bitri 264 . . 3 ([𝑍 / 𝑛](suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑍 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
1211ralbii 2980 . 2 (∀𝑖 ∈ ω [𝑍 / 𝑛](suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑍 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
132, 4, 123bitri 286 1 ([𝑍 / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑍 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  [wsbc 3435   ciun 4520  suc csuc 5725  cfv 5888  ωcom 7065   predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-sbc 3436
This theorem is referenced by:  bnj106  30938  bnj153  30950
  Copyright terms: Public domain W3C validator