MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brecop2 Structured version   Visualization version   GIF version

Theorem brecop2 7841
Description: Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996.)
Hypotheses
Ref Expression
brecop2.1 ∈ V
brecop2.5 dom = (𝐺 × 𝐺)
brecop2.6 𝐻 = ((𝐺 × 𝐺) / )
brecop2.7 𝑅 ⊆ (𝐻 × 𝐻)
brecop2.8 ⊆ (𝐺 × 𝐺)
brecop2.9 ¬ ∅ ∈ 𝐺
brecop2.10 dom + = (𝐺 × 𝐺)
brecop2.11 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶)))
Assertion
Ref Expression
brecop2 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶))

Proof of Theorem brecop2
StepHypRef Expression
1 brecop2.7 . . . 4 𝑅 ⊆ (𝐻 × 𝐻)
21brel 5168 . . 3 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] → ([⟨𝐴, 𝐵⟩] 𝐻 ∧ [⟨𝐶, 𝐷⟩] 𝐻))
3 brecop2.5 . . . . . . 7 dom = (𝐺 × 𝐺)
4 ecelqsdm 7817 . . . . . . 7 ((dom = (𝐺 × 𝐺) ∧ [⟨𝐴, 𝐵⟩] ∈ ((𝐺 × 𝐺) / )) → ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))
53, 4mpan 706 . . . . . 6 ([⟨𝐴, 𝐵⟩] ∈ ((𝐺 × 𝐺) / ) → ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))
6 brecop2.6 . . . . . 6 𝐻 = ((𝐺 × 𝐺) / )
75, 6eleq2s 2719 . . . . 5 ([⟨𝐴, 𝐵⟩] 𝐻 → ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))
8 opelxp 5146 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺) ↔ (𝐴𝐺𝐵𝐺))
97, 8sylib 208 . . . 4 ([⟨𝐴, 𝐵⟩] 𝐻 → (𝐴𝐺𝐵𝐺))
10 ecelqsdm 7817 . . . . . . 7 ((dom = (𝐺 × 𝐺) ∧ [⟨𝐶, 𝐷⟩] ∈ ((𝐺 × 𝐺) / )) → ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))
113, 10mpan 706 . . . . . 6 ([⟨𝐶, 𝐷⟩] ∈ ((𝐺 × 𝐺) / ) → ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))
1211, 6eleq2s 2719 . . . . 5 ([⟨𝐶, 𝐷⟩] 𝐻 → ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))
13 opelxp 5146 . . . . 5 (⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺) ↔ (𝐶𝐺𝐷𝐺))
1412, 13sylib 208 . . . 4 ([⟨𝐶, 𝐷⟩] 𝐻 → (𝐶𝐺𝐷𝐺))
159, 14anim12i 590 . . 3 (([⟨𝐴, 𝐵⟩] 𝐻 ∧ [⟨𝐶, 𝐷⟩] 𝐻) → ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
162, 15syl 17 . 2 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] → ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
17 brecop2.8 . . . . 5 ⊆ (𝐺 × 𝐺)
1817brel 5168 . . . 4 ((𝐴 + 𝐷) (𝐵 + 𝐶) → ((𝐴 + 𝐷) ∈ 𝐺 ∧ (𝐵 + 𝐶) ∈ 𝐺))
19 brecop2.10 . . . . . 6 dom + = (𝐺 × 𝐺)
20 brecop2.9 . . . . . 6 ¬ ∅ ∈ 𝐺
2119, 20ndmovrcl 6820 . . . . 5 ((𝐴 + 𝐷) ∈ 𝐺 → (𝐴𝐺𝐷𝐺))
2219, 20ndmovrcl 6820 . . . . 5 ((𝐵 + 𝐶) ∈ 𝐺 → (𝐵𝐺𝐶𝐺))
2321, 22anim12i 590 . . . 4 (((𝐴 + 𝐷) ∈ 𝐺 ∧ (𝐵 + 𝐶) ∈ 𝐺) → ((𝐴𝐺𝐷𝐺) ∧ (𝐵𝐺𝐶𝐺)))
2418, 23syl 17 . . 3 ((𝐴 + 𝐷) (𝐵 + 𝐶) → ((𝐴𝐺𝐷𝐺) ∧ (𝐵𝐺𝐶𝐺)))
25 an42 866 . . 3 (((𝐴𝐺𝐷𝐺) ∧ (𝐵𝐺𝐶𝐺)) ↔ ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
2624, 25sylib 208 . 2 ((𝐴 + 𝐷) (𝐵 + 𝐶) → ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
27 brecop2.11 . 2 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶)))
2816, 26, 27pm5.21nii 368 1 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  c0 3915  cop 4183   class class class wbr 4653   × cxp 5112  dom cdm 5114  (class class class)co 6650  [cec 7740   / cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ov 6653  df-ec 7744  df-qs 7748
This theorem is referenced by:  ltsrpr  9898
  Copyright terms: Public domain W3C validator