![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brres2 | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019.) (Revised by Peter Mazsa, 16-Dec-2021.) |
Ref | Expression |
---|---|
brres2 | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brresALTV 34032 | . . 3 ⊢ (𝐶 ∈ ran (𝑅 ↾ 𝐴) → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
2 | 1 | pm5.32i 669 | . 2 ⊢ ((𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵(𝑅 ↾ 𝐴)𝐶) ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
3 | relres 5426 | . . . 4 ⊢ Rel (𝑅 ↾ 𝐴) | |
4 | 3 | relelrni 5363 | . . 3 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 → 𝐶 ∈ ran (𝑅 ↾ 𝐴)) |
5 | 4 | pm4.71ri 665 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵(𝑅 ↾ 𝐴)𝐶)) |
6 | brinxp2ALTV 34034 | . . 3 ⊢ (𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶 ↔ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴)) ∧ 𝐵𝑅𝐶)) | |
7 | df-3an 1039 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵𝑅𝐶) ↔ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴)) ∧ 𝐵𝑅𝐶)) | |
8 | 3anan12 1051 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵𝑅𝐶) ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
9 | 6, 7, 8 | 3bitr2i 288 | . 2 ⊢ (𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶 ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
10 | 2, 5, 9 | 3bitr4i 292 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 ∩ cin 3573 class class class wbr 4653 × cxp 5112 ran crn 5115 ↾ cres 5116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 |
This theorem is referenced by: brinxprnres 34059 |
Copyright terms: Public domain | W3C validator |