![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71r 663 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: biadan2 674 anabs7 852 orabs 900 prlem2 1006 eu5 2496 2moswap 2547 exsnrex 4221 eliunxp 5259 asymref 5512 dffun9 5917 funcnv 5958 funcnv3 5959 f1ompt 6382 eufnfv 6491 dff1o6 6531 dfom2 7067 elxp4 7110 elxp5 7111 abexex 7151 dfoprab4 7225 tpostpos 7372 brwitnlem 7587 erovlem 7843 elixp2 7912 xpsnen 8044 elom3 8545 cardval2 8817 isinfcard 8915 infmap2 9040 elznn0nn 11391 zrevaddcl 11422 qrevaddcl 11810 hash2prb 13254 cotr2g 13715 climreu 14287 isprm3 15396 hashbc0 15709 imasleval 16201 isssc 16480 isgim 17704 eldprd 18403 brric2 18745 islmim 19062 tgval2 20760 eltg2b 20763 snfil 21668 isms2 22255 setsms 22285 elii1 22734 phtpcer 22794 phtpcerOLD 22795 elovolm 23243 ellimc2 23641 limcun 23659 1cubr 24569 fsumvma2 24939 dchrelbas3 24963 2lgslem1b 25117 rusgrnumwwlks 26869 isgrpo 27351 mdsl2i 29181 cvmdi 29183 rabfmpunirn 29453 eulerpartlemn 30443 bnj580 30983 bnj1049 31042 snmlval 31313 elmthm 31473 imaindm 31682 dmscut 31918 madeval2 31936 brtxp2 31988 brpprod3a 31993 ismgmOLD 33649 brres2 34035 prtlem100 34144 islln2 34797 islpln2 34822 islvol2 34866 elmapintrab 37882 clcnvlem 37930 sprvalpw 41730 sprvalpwn0 41733 eliunxp2 42112 elbigo 42345 |
Copyright terms: Public domain | W3C validator |