| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccased | Structured version Visualization version GIF version | ||
| Description: Deduction for combining cases. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| ccased.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) |
| ccased.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜂)) |
| ccased.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜂)) |
| ccased.4 | ⊢ (𝜑 → ((𝜃 ∧ 𝜏) → 𝜂)) |
| Ref | Expression |
|---|---|
| ccased | ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccased.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) | |
| 2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜂)) |
| 3 | ccased.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜂)) | |
| 4 | 3 | com12 32 | . . 3 ⊢ ((𝜃 ∧ 𝜒) → (𝜑 → 𝜂)) |
| 5 | ccased.3 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜂)) | |
| 6 | 5 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜏) → (𝜑 → 𝜂)) |
| 7 | ccased.4 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜏) → 𝜂)) | |
| 8 | 7 | com12 32 | . . 3 ⊢ ((𝜃 ∧ 𝜏) → (𝜑 → 𝜂)) |
| 9 | 2, 4, 6, 8 | ccase 987 | . 2 ⊢ (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → (𝜑 → 𝜂)) |
| 10 | 9 | com12 32 | 1 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
| This theorem is referenced by: fpwwe2lem13 9464 mulge0 10546 zmulcl 11426 gcdabs 15250 lcmabs 15318 pospo 16973 mulgass 17579 indistopon 20805 lgsdir2lem5 25054 outsideofeq 32237 smprngopr 33851 cdlemg33 35999 monotoddzzfi 37507 acongtr 37545 |
| Copyright terms: Public domain | W3C validator |