Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideofeq Structured version   Visualization version   GIF version

Theorem outsideofeq 32237
Description: Uniqueness law for OutsideOf. Analogue of segconeq 32117. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideofeq ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))

Proof of Theorem outsideofeq
StepHypRef Expression
1 simp1 1061 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simp21 1094 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
3 simp32 1098 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑋 ∈ (𝔼‘𝑁))
4 simp22 1095 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑅 ∈ (𝔼‘𝑁))
5 broutsideof2 32229 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑋, 𝑅⟩ ↔ (𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))))
61, 2, 3, 4, 5syl13anc 1328 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑋, 𝑅⟩ ↔ (𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))))
76anbi1d 741 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩)))
8 simp33 1099 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑌 ∈ (𝔼‘𝑁))
9 broutsideof2 32229 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑌, 𝑅⟩ ↔ (𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))))
101, 2, 8, 4, 9syl13anc 1328 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑌, 𝑅⟩ ↔ (𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))))
1110anbi1d 741 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)))
127, 11anbi12d 747 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) ↔ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))))
13 simpll3 1102 . . . . . . 7 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))
14 simprl3 1108 . . . . . . 7 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))
1513, 14jca 554 . . . . . 6 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)))
1615adantl 482 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)))
17 simpll2 1101 . . . . . 6 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑅𝐴)
1817adantl 482 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑅𝐴)
19 simp23 1096 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
20 simp31 1097 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
21 simprlr 803 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩)
22 simprrr 805 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)
231, 2, 3, 2, 8, 19, 20, 21, 22cgrtr3and 32102 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
2416, 18, 23jca32 558 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)))
25 simprll 802 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑅⟩)
26 simprlr 803 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑅⟩)
27 simprrr 805 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
28 midofsegid 32211 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
291, 2, 4, 3, 8, 28syl122anc 1335 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
3029adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
3125, 26, 27, 30mp3and 1427 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
3231exp32 631 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
33 simprlr 803 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑅⟩)
34 simprll 802 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑋⟩)
351, 2, 8, 4, 3, 33, 34btwnexchand 32133 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑋⟩)
36 simprrr 805 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
371, 2, 3, 8, 35, 36endofsegidand 32193 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
3837exp32 631 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
39 simprll 802 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑅⟩)
40 simprlr 803 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑌⟩)
411, 2, 3, 4, 8, 39, 40btwnexchand 32133 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑌⟩)
42 simprrr 805 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
431, 2, 3, 2, 8, 42cgrcomand 32098 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑌⟩Cgr⟨𝐴, 𝑋⟩)
441, 2, 8, 3, 41, 43endofsegidand 32193 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 = 𝑋)
4544eqcomd 2628 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
4645exp32 631 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
47 simprr 796 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑋 Btwn ⟨𝐴, 𝑌⟩)
48 simplrr 801 . . . . . . . . . . . . 13 ((((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
4948adantl 482 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
501, 2, 3, 2, 8, 49cgrcomand 32098 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → ⟨𝐴, 𝑌⟩Cgr⟨𝐴, 𝑋⟩)
511, 2, 8, 3, 47, 50endofsegidand 32193 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑌 = 𝑋)
5251eqcomd 2628 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑋 = 𝑌)
5352expr 643 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ → 𝑋 = 𝑌))
54 simprr 796 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → 𝑌 Btwn ⟨𝐴, 𝑋⟩)
55 simplrr 801 . . . . . . . . . . 11 ((((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
5655adantl 482 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
571, 2, 3, 8, 54, 56endofsegidand 32193 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → 𝑋 = 𝑌)
5857expr 643 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑌 Btwn ⟨𝐴, 𝑋⟩ → 𝑋 = 𝑌))
59 simprrl 804 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅𝐴)
6059necomd 2849 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝐴𝑅)
61 simprll 802 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑋⟩)
62 simprlr 803 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑌⟩)
63 btwnconn1 32208 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
641, 2, 4, 3, 8, 63syl122anc 1335 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
6564adantr 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
6660, 61, 62, 65mp3and 1427 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩))
6753, 58, 66mpjaod 396 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
6867exp32 631 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
6932, 38, 46, 68ccased 988 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
7069imp32 449 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
7124, 70syldan 487 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑋 = 𝑌)
7271ex 450 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))
7312, 72sylbid 230 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cop 4183   class class class wbr 4653  cfv 5888  cn 11020  𝔼cee 25768   Btwn cbtwn 25769  Cgrccgr 25770  OutsideOfcoutsideof 32226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773  df-ofs 32090  df-colinear 32146  df-ifs 32147  df-cgr3 32148  df-fs 32149  df-outsideof 32227
This theorem is referenced by:  outsideofeu  32238  outsidele  32239
  Copyright terms: Public domain W3C validator