![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zmulcl | Structured version Visualization version GIF version |
Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
Ref | Expression |
---|---|
zmulcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 11392 | . 2 ⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))) | |
2 | elznn0 11392 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
3 | nn0mulcl 11329 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0) | |
4 | 3 | orcd 407 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
6 | remulcl 10021 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · 𝑁) ∈ ℝ) | |
7 | 5, 6 | jctild 566 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
8 | nn0mulcl 11329 | . . . . . . . . 9 ⊢ ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (-𝑀 · 𝑁) ∈ ℕ0) | |
9 | recn 10026 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℝ → 𝑀 ∈ ℂ) | |
10 | recn 10026 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
11 | mulneg1 10466 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) | |
12 | 9, 10, 11 | syl2an 494 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) |
13 | 12 | eleq1d 2686 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · 𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0)) |
14 | 8, 13 | syl5ib 234 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0)) |
15 | olc 399 | . . . . . . . 8 ⊢ (-(𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) | |
16 | 14, 15 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
17 | 16, 6 | jctild 566 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
18 | nn0mulcl 11329 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · -𝑁) ∈ ℕ0) | |
19 | mulneg2 10467 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) | |
20 | 9, 10, 19 | syl2an 494 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) |
21 | 20 | eleq1d 2686 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 · -𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0)) |
22 | 18, 21 | syl5ib 234 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0)) |
23 | 22, 15 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
24 | 23, 6 | jctild 566 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
25 | nn0mulcl 11329 | . . . . . . . . 9 ⊢ ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (-𝑀 · -𝑁) ∈ ℕ0) | |
26 | mul2neg 10469 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) | |
27 | 9, 10, 26 | syl2an 494 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) |
28 | 27 | eleq1d 2686 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · -𝑁) ∈ ℕ0 ↔ (𝑀 · 𝑁) ∈ ℕ0)) |
29 | 25, 28 | syl5ib 234 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)) |
30 | orc 400 | . . . . . . . 8 ⊢ ((𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) | |
31 | 29, 30 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
32 | 31, 6 | jctild 566 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
33 | 7, 17, 24, 32 | ccased 988 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
34 | elznn0 11392 | . . . . 5 ⊢ ((𝑀 · 𝑁) ∈ ℤ ↔ ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) | |
35 | 33, 34 | syl6ibr 242 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝑀 · 𝑁) ∈ ℤ)) |
36 | 35 | imp 445 | . . 3 ⊢ (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ ((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ) |
37 | 36 | an4s 869 | . 2 ⊢ (((𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)) ∧ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ) |
38 | 1, 2, 37 | syl2anb 496 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℂcc 9934 ℝcr 9935 · cmul 9941 -cneg 10267 ℕ0cn0 11292 ℤcz 11377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 |
This theorem is referenced by: zdivmul 11449 msqznn 11459 zmulcld 11488 uz2mulcl 11766 qaddcl 11804 qmulcl 11806 qreccl 11808 fzctr 12451 flmulnn0 12628 zexpcl 12875 iexpcyc 12969 zesq 12987 cshweqrep 13567 fprodzcl 14684 zrisefaccl 14751 zfallfaccl 14752 dvdsmul1 15003 dvdsmul2 15004 muldvds1 15006 muldvds2 15007 dvdscmul 15008 dvdsmulc 15009 dvdscmulr 15010 dvdsmulcr 15011 dvds2ln 15014 dvdstr 15018 dvdsmultr1 15019 dvdsmultr2 15021 3dvdsdec 15054 3dvdsdecOLD 15055 3dvds2dec 15056 3dvds2decOLD 15057 oexpneg 15069 mulsucdiv2z 15077 divalglem0 15116 divalglem2 15118 divalglem4 15119 divalglem8 15123 divalgb 15127 divalgmod 15129 divalgmodOLD 15130 ndvdsi 15136 gcdaddmlem 15245 absmulgcd 15266 gcdmultiple 15269 gcdmultiplez 15270 dvdsmulgcd 15274 rpmulgcd 15275 lcmcllem 15309 coprmdvdsOLD 15367 rpmul 15373 cncongr1 15381 cncongr2 15382 eulerthlem2 15487 modprminv 15504 modprminveq 15505 modprm0 15510 pythagtriplem4 15524 pcpremul 15548 pcmul 15556 gzmulcl 15642 pgpfac1lem2 18474 zsubrg 19799 dvdsrzring 19831 mulgrhm 19846 domnchr 19880 znfld 19909 znunit 19912 mbfi1fseqlem5 23486 dvexp3 23741 basellem2 24808 basellem5 24811 dvdsflf1o 24913 chtub 24937 bposlem1 25009 bposlem5 25013 bposlem6 25014 lgslem3 25024 lgsval4a 25044 lgsneg 25046 lgsdir2 25055 lgsdchr 25080 lgseisenlem1 25100 lgseisenlem2 25101 lgseisenlem3 25102 lgsquadlem1 25105 lgsquad2lem2 25110 2lgsoddprmlem2 25134 chebbnd1lem1 25158 chebbnd1lem3 25160 knoppndvlem2 32504 fzmul 33537 mzpclall 37290 mzpindd 37309 acongrep 37547 acongeq 37550 jm2.18 37555 jm2.21 37561 jm2.26a 37567 jm2.26 37569 jm2.16nn0 37571 jm2.27a 37572 jm2.27c 37574 jm3.1lem3 37586 fourierswlem 40447 oexpnegALTV 41588 oexpnegnz 41589 tgblthelfgott 41703 tgblthelfgottOLD 41709 2zrngmmgm 41946 zlmodzxzequa 42285 zlmodzxzequap 42288 |
Copyright terms: Public domain | W3C validator |