MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pospo Structured version   Visualization version   GIF version

Theorem pospo 16973
Description: Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pospo.b 𝐵 = (Base‘𝐾)
pospo.l = (le‘𝐾)
pospo.s < = (lt‘𝐾)
Assertion
Ref Expression
pospo (𝐾𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))

Proof of Theorem pospo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pospo.s . . . . 5 < = (lt‘𝐾)
21pltirr 16963 . . . 4 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → ¬ 𝑥 < 𝑥)
3 pospo.b . . . . 5 𝐵 = (Base‘𝐾)
43, 1plttr 16970 . . . 4 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
52, 4ispod 5043 . . 3 (𝐾 ∈ Poset → < Po 𝐵)
6 relres 5426 . . . . 5 Rel ( I ↾ 𝐵)
76a1i 11 . . . 4 (𝐾 ∈ Poset → Rel ( I ↾ 𝐵))
8 opabresid 5455 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = ( I ↾ 𝐵)
98eleq2i 2693 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵))
10 opabid 4982 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} ↔ (𝑥𝐵𝑦 = 𝑥))
119, 10bitr3i 266 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵) ↔ (𝑥𝐵𝑦 = 𝑥))
12 pospo.l . . . . . . . 8 = (le‘𝐾)
133, 12posref 16951 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → 𝑥 𝑥)
14 df-br 4654 . . . . . . . 8 (𝑥 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ )
15 breq2 4657 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥 𝑦𝑥 𝑥))
1614, 15syl5bbr 274 . . . . . . 7 (𝑦 = 𝑥 → (⟨𝑥, 𝑦⟩ ∈ 𝑥 𝑥))
1713, 16syl5ibrcom 237 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → (𝑦 = 𝑥 → ⟨𝑥, 𝑦⟩ ∈ ))
1817expimpd 629 . . . . 5 (𝐾 ∈ Poset → ((𝑥𝐵𝑦 = 𝑥) → ⟨𝑥, 𝑦⟩ ∈ ))
1911, 18syl5bi 232 . . . 4 (𝐾 ∈ Poset → (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵) → ⟨𝑥, 𝑦⟩ ∈ ))
207, 19relssdv 5212 . . 3 (𝐾 ∈ Poset → ( I ↾ 𝐵) ⊆ )
215, 20jca 554 . 2 (𝐾 ∈ Poset → ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ))
22 elex 3212 . . . . 5 (𝐾𝑉𝐾 ∈ V)
2322adantr 481 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐾 ∈ V)
243a1i 11 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐵 = (Base‘𝐾))
2512a1i 11 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → = (le‘𝐾))
26 equid 1939 . . . . . 6 𝑥 = 𝑥
27 simpr 477 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥𝐵)
28 resieq 5407 . . . . . . 7 ((𝑥𝐵𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 = 𝑥))
2927, 27, 28syl2anc 693 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 = 𝑥))
3026, 29mpbiri 248 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥( I ↾ 𝐵)𝑥)
31 simplrr 801 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → ( I ↾ 𝐵) ⊆ )
3231ssbrd 4696 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 𝑥))
3330, 32mpd 15 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥 𝑥)
343, 12, 1pleval2i 16964 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
35343adant1 1079 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
363, 12, 1pleval2i 16964 . . . . . . 7 ((𝑦𝐵𝑥𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
3736ancoms 469 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
38373adant1 1079 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
39 simprl 794 . . . . . . . 8 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → < Po 𝐵)
40 po2nr 5048 . . . . . . . . 9 (( < Po 𝐵 ∧ (𝑥𝐵𝑦𝐵)) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
41403impb 1260 . . . . . . . 8 (( < Po 𝐵𝑥𝐵𝑦𝐵) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
4239, 41syl3an1 1359 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
4342pm2.21d 118 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 < 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦))
44 simpl 473 . . . . . . 7 ((𝑥 = 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦)
4544a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 = 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦))
46 simpr 477 . . . . . . . 8 ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑦 = 𝑥)
4746eqcomd 2628 . . . . . . 7 ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦)
4847a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦))
49 simpl 473 . . . . . . 7 ((𝑥 = 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦)
5049a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 = 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦))
5143, 45, 48, 50ccased 988 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (((𝑥 < 𝑦𝑥 = 𝑦) ∧ (𝑦 < 𝑥𝑦 = 𝑥)) → 𝑥 = 𝑦))
5235, 38, 51syl2and 500 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
53 simpr1 1067 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
54 simpr2 1068 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
5553, 54, 34syl2anc 693 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
56 simpr3 1069 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
573, 12, 1pleval2i 16964 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦 𝑧 → (𝑦 < 𝑧𝑦 = 𝑧)))
5854, 56, 57syl2anc 693 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑦 𝑧 → (𝑦 < 𝑧𝑦 = 𝑧)))
59 potr 5047 . . . . . . . 8 (( < Po 𝐵 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
6039, 59sylan 488 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
61 simpll 790 . . . . . . . 8 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝐾𝑉)
6212, 1pltle 16961 . . . . . . . 8 ((𝐾𝑉𝑥𝐵𝑧𝐵) → (𝑥 < 𝑧𝑥 𝑧))
6361, 53, 56, 62syl3anc 1326 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 < 𝑧𝑥 𝑧))
6460, 63syld 47 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 𝑧))
65 breq1 4656 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 < 𝑧𝑦 < 𝑧))
6665biimpar 502 . . . . . . 7 ((𝑥 = 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧)
6766, 63syl5 34 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 = 𝑦𝑦 < 𝑧) → 𝑥 𝑧))
68 breq2 4657 . . . . . . . 8 (𝑦 = 𝑧 → (𝑥 < 𝑦𝑥 < 𝑧))
6968biimpac 503 . . . . . . 7 ((𝑥 < 𝑦𝑦 = 𝑧) → 𝑥 < 𝑧)
7069, 63syl5 34 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 = 𝑧) → 𝑥 𝑧))
7153, 33syldan 487 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥 𝑥)
72 eqtr 2641 . . . . . . . 8 ((𝑥 = 𝑦𝑦 = 𝑧) → 𝑥 = 𝑧)
7372breq2d 4665 . . . . . . 7 ((𝑥 = 𝑦𝑦 = 𝑧) → (𝑥 𝑥𝑥 𝑧))
7471, 73syl5ibcom 235 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 = 𝑦𝑦 = 𝑧) → 𝑥 𝑧))
7564, 67, 70, 74ccased 988 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (((𝑥 < 𝑦𝑥 = 𝑦) ∧ (𝑦 < 𝑧𝑦 = 𝑧)) → 𝑥 𝑧))
7655, 58, 75syl2and 500 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
7723, 24, 25, 33, 52, 76isposd 16955 . . 3 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐾 ∈ Poset)
7877ex 450 . 2 (𝐾𝑉 → (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) → 𝐾 ∈ Poset))
7921, 78impbid2 216 1 (𝐾𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  cop 4183   class class class wbr 4653  {copab 4712   I cid 5023   Po wpo 5033  cres 5116  Rel wrel 5119  cfv 5888  Basecbs 15857  lecple 15948  Posetcpo 16940  ltcplt 16941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-preset 16928  df-poset 16946  df-plt 16958
This theorem is referenced by:  tosso  17036
  Copyright terms: Public domain W3C validator