Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv2 Structured version   Visualization version   GIF version

Theorem cdleme31fv2 35681
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 23-Feb-2013.)
Hypothesis
Ref Expression
cdleme31fv2.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme31fv2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑃   𝑥,𝑄   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝑂(𝑥)

Proof of Theorem cdleme31fv2
StepHypRef Expression
1 cdleme31fv2.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
21a1i 11 . 2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥)))
3 breq1 4656 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
43notbid 308 . . . . . . . 8 (𝑥 = 𝑋 → (¬ 𝑥 𝑊 ↔ ¬ 𝑋 𝑊))
54anbi2d 740 . . . . . . 7 (𝑥 = 𝑋 → ((𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
65notbid 308 . . . . . 6 (𝑥 = 𝑋 → (¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
76biimparc 504 . . . . 5 ((¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ 𝑥 = 𝑋) → ¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊))
87adantll 750 . . . 4 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → ¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊))
98iffalsed 4097 . . 3 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = 𝑥)
10 simpr 477 . . 3 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
119, 10eqtrd 2656 . 2 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = 𝑋)
12 simpl 473 . 2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
132, 11, 12, 12fvmptd 6288 1 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  cdleme31id  35682  cdleme32fvcl  35728  cdleme32e  35733  cdleme32le  35735  cdleme48gfv  35825  cdleme50ldil  35836
  Copyright terms: Public domain W3C validator