Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk41 Structured version   Visualization version   GIF version

Theorem cdlemk41 36208
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013.)
Hypothesis
Ref Expression
cdlemk41.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
Assertion
Ref Expression
cdlemk41 (𝐺𝑇𝐺 / 𝑔𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))))
Distinct variable groups:   ,𝑔   ,𝑔   𝑔,𝐺   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏
Allowed substitution hints:   𝑃(𝑏)   𝑅(𝑏)   𝑇(𝑏)   𝐺(𝑏)   (𝑏)   (𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑏)

Proof of Theorem cdlemk41
StepHypRef Expression
1 nfcvd 2765 . 2 (𝐺𝑇𝑔((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))))
2 cdlemk41.y . . 3 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
3 fveq2 6191 . . . . 5 (𝑔 = 𝐺 → (𝑅𝑔) = (𝑅𝐺))
43oveq2d 6666 . . . 4 (𝑔 = 𝐺 → (𝑃 (𝑅𝑔)) = (𝑃 (𝑅𝐺)))
5 coeq1 5279 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑏) = (𝐺𝑏))
65fveq2d 6195 . . . . 5 (𝑔 = 𝐺 → (𝑅‘(𝑔𝑏)) = (𝑅‘(𝐺𝑏)))
76oveq2d 6666 . . . 4 (𝑔 = 𝐺 → (𝑍 (𝑅‘(𝑔𝑏))) = (𝑍 (𝑅‘(𝐺𝑏))))
84, 7oveq12d 6668 . . 3 (𝑔 = 𝐺 → ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏)))) = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))))
92, 8syl5eq 2668 . 2 (𝑔 = 𝐺𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))))
101, 9csbiegf 3557 1 (𝐺𝑇𝐺 / 𝑔𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  csb 3533  ccnv 5113  ccom 5118  cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-co 5123  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  cdlemkid2  36212  cdlemkfid3N  36213  cdlemky  36214  cdlemk42yN  36232
  Copyright terms: Public domain W3C validator