![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clel4 | Structured version Visualization version GIF version |
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
clel4.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
clel4 | ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel4.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | eleq2 2690 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | ceqsalv 3233 | . 2 ⊢ (∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥) ↔ 𝐴 ∈ 𝐵) |
4 | 3 | bicomi 214 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 = wceq 1483 ∈ wcel 1990 Vcvv 3200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
This theorem is referenced by: intpr 4510 |
Copyright terms: Public domain | W3C validator |