MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intpr Structured version   Visualization version   GIF version

Theorem intpr 4510
Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.)
Hypotheses
Ref Expression
intpr.1 𝐴 ∈ V
intpr.2 𝐵 ∈ V
Assertion
Ref Expression
intpr {𝐴, 𝐵} = (𝐴𝐵)

Proof of Theorem intpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1798 . . . 4 (∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
2 vex 3203 . . . . . . . 8 𝑦 ∈ V
32elpr 4198 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
43imbi1i 339 . . . . . 6 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦))
5 jaob 822 . . . . . 6 (((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
64, 5bitri 264 . . . . 5 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
76albii 1747 . . . 4 (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
8 intpr.1 . . . . . 6 𝐴 ∈ V
98clel4 3342 . . . . 5 (𝑥𝐴 ↔ ∀𝑦(𝑦 = 𝐴𝑥𝑦))
10 intpr.2 . . . . . 6 𝐵 ∈ V
1110clel4 3342 . . . . 5 (𝑥𝐵 ↔ ∀𝑦(𝑦 = 𝐵𝑥𝑦))
129, 11anbi12i 733 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
131, 7, 123bitr4i 292 . . 3 (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ (𝑥𝐴𝑥𝐵))
14 vex 3203 . . . 4 𝑥 ∈ V
1514elint 4481 . . 3 (𝑥 {𝐴, 𝐵} ↔ ∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦))
16 elin 3796 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
1713, 15, 163bitr4i 292 . 2 (𝑥 {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴𝐵))
1817eqriv 2619 1 {𝐴, 𝐵} = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  wal 1481   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  {cpr 4179   cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-sn 4178  df-pr 4180  df-int 4476
This theorem is referenced by:  intprg  4511  uniintsn  4514  op1stb  4940  fiint  8237  shincli  28221  chincli  28319
  Copyright terms: Public domain W3C validator