MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnv0OLD Structured version   Visualization version   GIF version

Theorem cnv0OLD 5536
Description: Obsolete version of cnv0 5535 as of 25-Oct-2021. (Contributed by NM, 6-Apr-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnv0OLD ∅ = ∅

Proof of Theorem cnv0OLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5503 . 2 Rel
2 rel0 5243 . 2 Rel ∅
3 vex 3203 . . . 4 𝑥 ∈ V
4 vex 3203 . . . 4 𝑦 ∈ V
53, 4opelcnv 5304 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅)
6 noel 3919 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
7 noel 3919 . . . 4 ¬ ⟨𝑦, 𝑥⟩ ∈ ∅
86, 72false 365 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅)
95, 8bitr4i 267 . 2 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
101, 2, 9eqrelriiv 5214 1 ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  c0 3915  cop 4183  ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator