![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnv0OLD | Structured version Visualization version GIF version |
Description: Obsolete version of cnv0 5535 as of 25-Oct-2021. (Contributed by NM, 6-Apr-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnv0OLD | ⊢ ◡∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5503 | . 2 ⊢ Rel ◡∅ | |
2 | rel0 5243 | . 2 ⊢ Rel ∅ | |
3 | vex 3203 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | vex 3203 | . . . 4 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | opelcnv 5304 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
6 | noel 3919 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
7 | noel 3919 | . . . 4 ⊢ ¬ 〈𝑦, 𝑥〉 ∈ ∅ | |
8 | 6, 7 | 2false 365 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
9 | 5, 8 | bitr4i 267 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
10 | 1, 2, 9 | eqrelriiv 5214 | 1 ⊢ ◡∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 ∅c0 3915 〈cop 4183 ◡ccnv 5113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |