| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2false | Structured version Visualization version GIF version | ||
| Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| 2false.1 | ⊢ ¬ 𝜑 |
| 2false.2 | ⊢ ¬ 𝜓 |
| Ref | Expression |
|---|---|
| 2false | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2false.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | 2false.2 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 1, 2 | 2th 254 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| 4 | 3 | con4bii 311 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 |
| This theorem is referenced by: bianfi 966 bifal 1497 cnv0OLD 5536 co02 5649 0er 7780 0erOLD 7781 00lss 18942 00ply1bas 19610 2lgslem4 25131 signswch 30638 pexmidlem8N 35263 dandysum2p2e4 41165 |
| Copyright terms: Public domain | W3C validator |