| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnvOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of cnvcnv 5586 as of 26-Nov-2021. (Contributed by NM, 8-Dec-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnvcnvOLD | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5503 | . . . . 5 ⊢ Rel ◡◡𝐴 | |
| 2 | df-rel 5121 | . . . . 5 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
| 3 | 1, 2 | mpbi 220 | . . . 4 ⊢ ◡◡𝐴 ⊆ (V × V) |
| 4 | relxp 5227 | . . . . 5 ⊢ Rel (V × V) | |
| 5 | dfrel2 5583 | . . . . 5 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
| 6 | 4, 5 | mpbi 220 | . . . 4 ⊢ ◡◡(V × V) = (V × V) |
| 7 | 3, 6 | sseqtr4i 3638 | . . 3 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
| 8 | dfss 3589 | . . 3 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
| 9 | 7, 8 | mpbi 220 | . 2 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
| 10 | cnvin 5540 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
| 11 | cnvin 5540 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
| 12 | 11 | cnveqi 5297 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
| 13 | inss2 3834 | . . . . 5 ⊢ (𝐴 ∩ (V × V)) ⊆ (V × V) | |
| 14 | df-rel 5121 | . . . . 5 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V)) | |
| 15 | 13, 14 | mpbir 221 | . . . 4 ⊢ Rel (𝐴 ∩ (V × V)) |
| 16 | dfrel2 5583 | . . . 4 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
| 17 | 15, 16 | mpbi 220 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
| 18 | 12, 17 | eqtr3i 2646 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (𝐴 ∩ (V × V)) |
| 19 | 9, 10, 18 | 3eqtr2i 2650 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 × cxp 5112 ◡ccnv 5113 Rel wrel 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |