MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Structured version   Visualization version   GIF version

Theorem cnvcnv 5586
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 cnvin 5540 . . 3 (𝐴(V × V)) = (𝐴(V × V))
2 cnvin 5540 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
32cnveqi 5297 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
4 relcnv 5503 . . . . . 6 Rel 𝐴
5 df-rel 5121 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
64, 5mpbi 220 . . . . 5 𝐴 ⊆ (V × V)
7 relxp 5227 . . . . . 6 Rel (V × V)
8 dfrel2 5583 . . . . . 6 (Rel (V × V) ↔ (V × V) = (V × V))
97, 8mpbi 220 . . . . 5 (V × V) = (V × V)
106, 9sseqtr4i 3638 . . . 4 𝐴(V × V)
11 dfss 3589 . . . 4 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
1210, 11mpbi 220 . . 3 𝐴 = (𝐴(V × V))
131, 3, 123eqtr4ri 2655 . 2 𝐴 = (𝐴 ∩ (V × V))
14 inss2 3834 . . . 4 (𝐴 ∩ (V × V)) ⊆ (V × V)
15 df-rel 5121 . . . 4 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V))
1614, 15mpbir 221 . . 3 Rel (𝐴 ∩ (V × V))
17 dfrel2 5583 . . 3 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1816, 17mpbi 220 . 2 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1913, 18eqtri 2644 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  Vcvv 3200  cin 3573  wss 3574   × cxp 5112  ccnv 5113  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by:  cnvcnv2  5588  cnvcnvss  5589  structcnvcnv  15871  strfv2d  15905  elcnvcnvintab  37888  relintab  37889  nonrel  37890  elcnvcnvlem  37905  cnvcnvintabd  37906
  Copyright terms: Public domain W3C validator