MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvssOLD Structured version   Visualization version   GIF version

Theorem cnvssOLD 5295
Description: Obsolete proof of cnvss 5294 as of 27-Apr-2021. Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
cnvssOLD (𝐴𝐵𝐴𝐵)

Proof of Theorem cnvssOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . 4 (𝐴𝐵 → (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ 𝐵))
2 df-br 4654 . . . 4 (𝑦𝐴𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
3 df-br 4654 . . . 4 (𝑦𝐵𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
41, 2, 33imtr4g 285 . . 3 (𝐴𝐵 → (𝑦𝐴𝑥𝑦𝐵𝑥))
54ssopab2dv 5004 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
6 df-cnv 5122 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
7 df-cnv 5122 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
85, 6, 73sstr4g 3646 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1990  wss 3574  cop 4183   class class class wbr 4653  {copab 4712  ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-in 3581  df-ss 3588  df-br 4654  df-opab 4713  df-cnv 5122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator