![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvss | Structured version Visualization version GIF version |
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.) |
Ref | Expression |
---|---|
cnvss | ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | ssbrd 4696 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑥 → 𝑦𝐵𝑥)) |
3 | 2 | ssopab2dv 5004 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
4 | df-cnv 5122 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
5 | df-cnv 5122 | . 2 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
6 | 3, 4, 5 | 3sstr4g 3646 | 1 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3574 class class class wbr 4653 {copab 4712 ◡ccnv 5113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-in 3581 df-ss 3588 df-br 4654 df-opab 4713 df-cnv 5122 |
This theorem is referenced by: cnveq 5296 rnss 5354 relcnvtr 5655 funss 5907 funres11 5966 funcnvres 5967 foimacnv 6154 funcnvuni 7119 tposss 7353 vdwnnlem1 15699 structcnvcnv 15871 catcoppccl 16758 cnvps 17212 tsrdir 17238 ustneism 22027 metustsym 22360 metust 22363 pi1xfrcnv 22857 eulerpartlemmf 30437 relcnveq3 34092 cnvssb 37892 trclubgNEW 37925 clrellem 37929 clcnvlem 37930 cnvrcl0 37932 cnvtrcl0 37933 cnvtrrel 37962 relexpaddss 38010 |
Copyright terms: Public domain | W3C validator |