MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvss Structured version   Visualization version   GIF version

Theorem cnvss 5294
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.)
Assertion
Ref Expression
cnvss (𝐴𝐵𝐴𝐵)

Proof of Theorem cnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴𝐵𝐴𝐵)
21ssbrd 4696 . . 3 (𝐴𝐵 → (𝑦𝐴𝑥𝑦𝐵𝑥))
32ssopab2dv 5004 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
4 df-cnv 5122 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
5 df-cnv 5122 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
63, 4, 53sstr4g 3646 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3574   class class class wbr 4653  {copab 4712  ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-in 3581  df-ss 3588  df-br 4654  df-opab 4713  df-cnv 5122
This theorem is referenced by:  cnveq  5296  rnss  5354  relcnvtr  5655  funss  5907  funres11  5966  funcnvres  5967  foimacnv  6154  funcnvuni  7119  tposss  7353  vdwnnlem1  15699  structcnvcnv  15871  catcoppccl  16758  cnvps  17212  tsrdir  17238  ustneism  22027  metustsym  22360  metust  22363  pi1xfrcnv  22857  eulerpartlemmf  30437  relcnveq3  34092  cnvssb  37892  trclubgNEW  37925  clrellem  37929  clcnvlem  37930  cnvrcl0  37932  cnvtrcl0  37933  cnvtrrel  37962  relexpaddss  38010
  Copyright terms: Public domain W3C validator