| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coi1 | Structured version Visualization version GIF version | ||
| Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| coi1 | ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 5633 | . 2 ⊢ Rel (𝐴 ∘ I ) | |
| 2 | vex 3203 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3203 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelco 5293 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ ∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | vex 3203 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
| 6 | 5 | ideq 5274 | . . . . . . . . 9 ⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
| 7 | equcom 1945 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) | |
| 8 | 6, 7 | bitri 264 | . . . . . . . 8 ⊢ (𝑥 I 𝑧 ↔ 𝑧 = 𝑥) |
| 9 | 8 | anbi1i 731 | . . . . . . 7 ⊢ ((𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑧 = 𝑥 ∧ 𝑧𝐴𝑦)) |
| 10 | 9 | exbii 1774 | . . . . . 6 ⊢ (∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧𝐴𝑦)) |
| 11 | breq1 4656 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
| 12 | 11 | equsexvw 1932 | . . . . . 6 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ 𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦) |
| 13 | 10, 12 | bitri 264 | . . . . 5 ⊢ (∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦) |
| 14 | 4, 13 | bitri 264 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ 𝑥𝐴𝑦) |
| 15 | df-br 4654 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 16 | 14, 15 | bitri 264 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
| 17 | 16 | eqrelriv 5213 | . 2 ⊢ ((Rel (𝐴 ∘ I ) ∧ Rel 𝐴) → (𝐴 ∘ I ) = 𝐴) |
| 18 | 1, 17 | mpan 706 | 1 ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 〈cop 4183 class class class wbr 4653 I cid 5023 ∘ ccom 5118 Rel wrel 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-co 5123 |
| This theorem is referenced by: coi2 5652 coires1 5653 fcoi1 6078 mvdco 17865 cocnv 33520 |
| Copyright terms: Public domain | W3C validator |