MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coi1 Structured version   Visualization version   Unicode version

Theorem coi1 5651
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi1  |-  ( Rel 
A  ->  ( A  o.  _I  )  =  A )

Proof of Theorem coi1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5633 . 2  |-  Rel  ( A  o.  _I  )
2 vex 3203 . . . . . 6  |-  x  e. 
_V
3 vex 3203 . . . . . 6  |-  y  e. 
_V
42, 3opelco 5293 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<->  E. z ( x  _I  z  /\  z A y ) )
5 vex 3203 . . . . . . . . . 10  |-  z  e. 
_V
65ideq 5274 . . . . . . . . 9  |-  ( x  _I  z  <->  x  =  z )
7 equcom 1945 . . . . . . . . 9  |-  ( x  =  z  <->  z  =  x )
86, 7bitri 264 . . . . . . . 8  |-  ( x  _I  z  <->  z  =  x )
98anbi1i 731 . . . . . . 7  |-  ( ( x  _I  z  /\  z A y )  <->  ( z  =  x  /\  z A y ) )
109exbii 1774 . . . . . 6  |-  ( E. z ( x  _I  z  /\  z A y )  <->  E. z
( z  =  x  /\  z A y ) )
11 breq1 4656 . . . . . . 7  |-  ( z  =  x  ->  (
z A y  <->  x A
y ) )
1211equsexvw 1932 . . . . . 6  |-  ( E. z ( z  =  x  /\  z A y )  <->  x A
y )
1310, 12bitri 264 . . . . 5  |-  ( E. z ( x  _I  z  /\  z A y )  <->  x A
y )
144, 13bitri 264 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<->  x A y )
15 df-br 4654 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
1614, 15bitri 264 . . 3  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<-> 
<. x ,  y >.  e.  A )
1716eqrelriv 5213 . 2  |-  ( ( Rel  ( A  o.  _I  )  /\  Rel  A
)  ->  ( A  o.  _I  )  =  A )
181, 17mpan 706 1  |-  ( Rel 
A  ->  ( A  o.  _I  )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   <.cop 4183   class class class wbr 4653    _I cid 5023    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-co 5123
This theorem is referenced by:  coi2  5652  coires1  5653  fcoi1  6078  mvdco  17865  cocnv  33520
  Copyright terms: Public domain W3C validator