Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coiun1 Structured version   Visualization version   GIF version

Theorem coiun1 37944
Description: Composition with an indexed union. Proof analgous to that of coiun 5645. (Contributed by RP, 20-Jun-2020.)
Assertion
Ref Expression
coiun1 ( 𝑥𝐶 𝐴𝐵) = 𝑥𝐶 (𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem coiun1
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5633 . 2 Rel ( 𝑥𝐶 𝐴𝐵)
2 reliun 5239 . . 3 (Rel 𝑥𝐶 (𝐴𝐵) ↔ ∀𝑥𝐶 Rel (𝐴𝐵))
3 relco 5633 . . . 4 Rel (𝐴𝐵)
43a1i 11 . . 3 (𝑥𝐶 → Rel (𝐴𝐵))
52, 4mprgbir 2927 . 2 Rel 𝑥𝐶 (𝐴𝐵)
6 eliun 4524 . . . . . . . 8 (⟨𝑤, 𝑧⟩ ∈ 𝑥𝐶 𝐴 ↔ ∃𝑥𝐶𝑤, 𝑧⟩ ∈ 𝐴)
7 df-br 4654 . . . . . . . 8 (𝑤 𝑥𝐶 𝐴𝑧 ↔ ⟨𝑤, 𝑧⟩ ∈ 𝑥𝐶 𝐴)
8 df-br 4654 . . . . . . . . 9 (𝑤𝐴𝑧 ↔ ⟨𝑤, 𝑧⟩ ∈ 𝐴)
98rexbii 3041 . . . . . . . 8 (∃𝑥𝐶 𝑤𝐴𝑧 ↔ ∃𝑥𝐶𝑤, 𝑧⟩ ∈ 𝐴)
106, 7, 93bitr4i 292 . . . . . . 7 (𝑤 𝑥𝐶 𝐴𝑧 ↔ ∃𝑥𝐶 𝑤𝐴𝑧)
1110anbi2i 730 . . . . . 6 ((𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ (𝑦𝐵𝑤 ∧ ∃𝑥𝐶 𝑤𝐴𝑧))
12 r19.42v 3092 . . . . . 6 (∃𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧) ↔ (𝑦𝐵𝑤 ∧ ∃𝑥𝐶 𝑤𝐴𝑧))
1311, 12bitr4i 267 . . . . 5 ((𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ ∃𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
1413exbii 1774 . . . 4 (∃𝑤(𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ ∃𝑤𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
15 rexcom4 3225 . . . 4 (∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧) ↔ ∃𝑤𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
1614, 15bitr4i 267 . . 3 (∃𝑤(𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
17 vex 3203 . . . 4 𝑦 ∈ V
18 vex 3203 . . . 4 𝑧 ∈ V
1917, 18opelco 5293 . . 3 (⟨𝑦, 𝑧⟩ ∈ ( 𝑥𝐶 𝐴𝐵) ↔ ∃𝑤(𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧))
20 eliun 4524 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵) ↔ ∃𝑥𝐶𝑦, 𝑧⟩ ∈ (𝐴𝐵))
2117, 18opelco 5293 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2221rexbii 3041 . . . 4 (∃𝑥𝐶𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2320, 22bitri 264 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2416, 19, 233bitr4i 292 . 2 (⟨𝑦, 𝑧⟩ ∈ ( 𝑥𝐶 𝐴𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵))
251, 5, 24eqrelriiv 5214 1 ( 𝑥𝐶 𝐴𝐵) = 𝑥𝐶 (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913  cop 4183   ciun 4520   class class class wbr 4653  ccom 5118  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-co 5123
This theorem is referenced by:  trclfvcom  38015  trclfvdecomr  38020  cotrclrcl  38034
  Copyright terms: Public domain W3C validator