Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaiun1 Structured version   Visualization version   GIF version

Theorem imaiun1 37943
Description: The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.)
Assertion
Ref Expression
imaiun1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem imaiun1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3225 . . . 4 (∃𝑥𝐴𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
2 vex 3203 . . . . . 6 𝑦 ∈ V
32elima3 5473 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
43rexbii 3041 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
5 eliun 4524 . . . . . . 7 (⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵)
65anbi2i 730 . . . . . 6 ((𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ (𝑧𝐶 ∧ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵))
7 r19.42v 3092 . . . . . 6 (∃𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ (𝑧𝐶 ∧ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵))
86, 7bitr4i 267 . . . . 5 ((𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
98exbii 1774 . . . 4 (∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
101, 4, 93bitr4ri 293 . . 3 (∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
112elima3 5473 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵))
12 eliun 4524 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
1310, 11, 123bitr4i 292 . 2 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ 𝑦 𝑥𝐴 (𝐵𝐶))
1413eqriv 2619 1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913  cop 4183   ciun 4520  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  trclimalb2  38018
  Copyright terms: Public domain W3C validator