![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > compneOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of compne 38643 as of 11-Nov-2021. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
compneOLD | ⊢ (V ∖ 𝐴) ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vn0 3924 | . 2 ⊢ V ≠ ∅ | |
2 | ssun1 3776 | . . . . . . . 8 ⊢ V ⊆ (V ∪ 𝐴) | |
3 | ssv 3625 | . . . . . . . 8 ⊢ (V ∪ 𝐴) ⊆ V | |
4 | 2, 3 | eqssi 3619 | . . . . . . 7 ⊢ V = (V ∪ 𝐴) |
5 | undif1 4043 | . . . . . . 7 ⊢ ((V ∖ 𝐴) ∪ 𝐴) = (V ∪ 𝐴) | |
6 | 4, 5 | eqtr4i 2647 | . . . . . 6 ⊢ V = ((V ∖ 𝐴) ∪ 𝐴) |
7 | uneq1 3760 | . . . . . 6 ⊢ ((V ∖ 𝐴) = 𝐴 → ((V ∖ 𝐴) ∪ 𝐴) = (𝐴 ∪ 𝐴)) | |
8 | 6, 7 | syl5eq 2668 | . . . . 5 ⊢ ((V ∖ 𝐴) = 𝐴 → V = (𝐴 ∪ 𝐴)) |
9 | unidm 3756 | . . . . 5 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
10 | 8, 9 | syl6eq 2672 | . . . 4 ⊢ ((V ∖ 𝐴) = 𝐴 → V = 𝐴) |
11 | difabs 3892 | . . . . . . 7 ⊢ ((V ∖ 𝐴) ∖ 𝐴) = (V ∖ 𝐴) | |
12 | id 22 | . . . . . . 7 ⊢ ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = 𝐴) | |
13 | 11, 12 | syl5req 2669 | . . . . . 6 ⊢ ((V ∖ 𝐴) = 𝐴 → 𝐴 = ((V ∖ 𝐴) ∖ 𝐴)) |
14 | difeq1 3721 | . . . . . 6 ⊢ ((V ∖ 𝐴) = 𝐴 → ((V ∖ 𝐴) ∖ 𝐴) = (𝐴 ∖ 𝐴)) | |
15 | 13, 14 | eqtrd 2656 | . . . . 5 ⊢ ((V ∖ 𝐴) = 𝐴 → 𝐴 = (𝐴 ∖ 𝐴)) |
16 | difid 3948 | . . . . 5 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
17 | 15, 16 | syl6eq 2672 | . . . 4 ⊢ ((V ∖ 𝐴) = 𝐴 → 𝐴 = ∅) |
18 | 10, 17 | eqtrd 2656 | . . 3 ⊢ ((V ∖ 𝐴) = 𝐴 → V = ∅) |
19 | 18 | necon3i 2826 | . 2 ⊢ (V ≠ ∅ → (V ∖ 𝐴) ≠ 𝐴) |
20 | 1, 19 | ax-mp 5 | 1 ⊢ (V ∖ 𝐴) ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ≠ wne 2794 Vcvv 3200 ∖ cdif 3571 ∪ cun 3572 ∅c0 3915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |