Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  compneOLD Structured version   Visualization version   GIF version

Theorem compneOLD 38644
Description: Obsolete proof of compne 38643 as of 11-Nov-2021. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
compneOLD (V ∖ 𝐴) ≠ 𝐴

Proof of Theorem compneOLD
StepHypRef Expression
1 vn0 3924 . 2 V ≠ ∅
2 ssun1 3776 . . . . . . . 8 V ⊆ (V ∪ 𝐴)
3 ssv 3625 . . . . . . . 8 (V ∪ 𝐴) ⊆ V
42, 3eqssi 3619 . . . . . . 7 V = (V ∪ 𝐴)
5 undif1 4043 . . . . . . 7 ((V ∖ 𝐴) ∪ 𝐴) = (V ∪ 𝐴)
64, 5eqtr4i 2647 . . . . . 6 V = ((V ∖ 𝐴) ∪ 𝐴)
7 uneq1 3760 . . . . . 6 ((V ∖ 𝐴) = 𝐴 → ((V ∖ 𝐴) ∪ 𝐴) = (𝐴𝐴))
86, 7syl5eq 2668 . . . . 5 ((V ∖ 𝐴) = 𝐴 → V = (𝐴𝐴))
9 unidm 3756 . . . . 5 (𝐴𝐴) = 𝐴
108, 9syl6eq 2672 . . . 4 ((V ∖ 𝐴) = 𝐴 → V = 𝐴)
11 difabs 3892 . . . . . . 7 ((V ∖ 𝐴) ∖ 𝐴) = (V ∖ 𝐴)
12 id 22 . . . . . . 7 ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = 𝐴)
1311, 12syl5req 2669 . . . . . 6 ((V ∖ 𝐴) = 𝐴𝐴 = ((V ∖ 𝐴) ∖ 𝐴))
14 difeq1 3721 . . . . . 6 ((V ∖ 𝐴) = 𝐴 → ((V ∖ 𝐴) ∖ 𝐴) = (𝐴𝐴))
1513, 14eqtrd 2656 . . . . 5 ((V ∖ 𝐴) = 𝐴𝐴 = (𝐴𝐴))
16 difid 3948 . . . . 5 (𝐴𝐴) = ∅
1715, 16syl6eq 2672 . . . 4 ((V ∖ 𝐴) = 𝐴𝐴 = ∅)
1810, 17eqtrd 2656 . . 3 ((V ∖ 𝐴) = 𝐴 → V = ∅)
1918necon3i 2826 . 2 (V ≠ ∅ → (V ∖ 𝐴) ≠ 𝐴)
201, 19ax-mp 5 1 (V ∖ 𝐴) ≠ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wne 2794  Vcvv 3200  cdif 3571  cun 3572  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator