Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  compneOLD Structured version   Visualization version   Unicode version

Theorem compneOLD 38644
Description: Obsolete proof of compne 38643 as of 11-Nov-2021. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
compneOLD  |-  ( _V 
\  A )  =/= 
A

Proof of Theorem compneOLD
StepHypRef Expression
1 vn0 3924 . 2  |-  _V  =/=  (/)
2 ssun1 3776 . . . . . . . 8  |-  _V  C_  ( _V  u.  A
)
3 ssv 3625 . . . . . . . 8  |-  ( _V  u.  A )  C_  _V
42, 3eqssi 3619 . . . . . . 7  |-  _V  =  ( _V  u.  A
)
5 undif1 4043 . . . . . . 7  |-  ( ( _V  \  A )  u.  A )  =  ( _V  u.  A
)
64, 5eqtr4i 2647 . . . . . 6  |-  _V  =  ( ( _V  \  A )  u.  A
)
7 uneq1 3760 . . . . . 6  |-  ( ( _V  \  A )  =  A  ->  (
( _V  \  A
)  u.  A )  =  ( A  u.  A ) )
86, 7syl5eq 2668 . . . . 5  |-  ( ( _V  \  A )  =  A  ->  _V  =  ( A  u.  A ) )
9 unidm 3756 . . . . 5  |-  ( A  u.  A )  =  A
108, 9syl6eq 2672 . . . 4  |-  ( ( _V  \  A )  =  A  ->  _V  =  A )
11 difabs 3892 . . . . . . 7  |-  ( ( _V  \  A ) 
\  A )  =  ( _V  \  A
)
12 id 22 . . . . . . 7  |-  ( ( _V  \  A )  =  A  ->  ( _V  \  A )  =  A )
1311, 12syl5req 2669 . . . . . 6  |-  ( ( _V  \  A )  =  A  ->  A  =  ( ( _V 
\  A )  \  A ) )
14 difeq1 3721 . . . . . 6  |-  ( ( _V  \  A )  =  A  ->  (
( _V  \  A
)  \  A )  =  ( A  \  A ) )
1513, 14eqtrd 2656 . . . . 5  |-  ( ( _V  \  A )  =  A  ->  A  =  ( A  \  A ) )
16 difid 3948 . . . . 5  |-  ( A 
\  A )  =  (/)
1715, 16syl6eq 2672 . . . 4  |-  ( ( _V  \  A )  =  A  ->  A  =  (/) )
1810, 17eqtrd 2656 . . 3  |-  ( ( _V  \  A )  =  A  ->  _V  =  (/) )
1918necon3i 2826 . 2  |-  ( _V  =/=  (/)  ->  ( _V  \  A )  =/=  A
)
201, 19ax-mp 5 1  |-  ( _V 
\  A )  =/= 
A
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator