MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con2b Structured version   Visualization version   GIF version

Theorem con2b 349
Description: Contraposition. Bidirectional version of con2 130. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
con2b ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))

Proof of Theorem con2b
StepHypRef Expression
1 con2 130 . 2 ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
2 con2 130 . 2 ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓))
31, 2impbii 199 1 ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197
This theorem is referenced by:  mt2bi  353  pm4.15  605  nic-ax  1598  nic-axALT  1599  alimex  1758  ssconb  3743  disjsn  4246  oneqmini  5776  kmlem4  8975  isprm3  15396  bnj1171  31068  bnj1176  31073  bnj1204  31080  bnj1388  31101  bnj1523  31139  wl-nancom  33297  dfxor5  38059  pm13.196a  38615
  Copyright terms: Public domain W3C validator