MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneqmini Structured version   Visualization version   GIF version

Theorem oneqmini 5776
Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.)
Assertion
Ref Expression
oneqmini (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oneqmini
StepHypRef Expression
1 ssint 4493 . . . . . 6 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
2 ssel 3597 . . . . . . . . . . . 12 (𝐵 ⊆ On → (𝐴𝐵𝐴 ∈ On))
3 ssel 3597 . . . . . . . . . . . 12 (𝐵 ⊆ On → (𝑥𝐵𝑥 ∈ On))
42, 3anim12d 586 . . . . . . . . . . 11 (𝐵 ⊆ On → ((𝐴𝐵𝑥𝐵) → (𝐴 ∈ On ∧ 𝑥 ∈ On)))
5 ontri1 5757 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
64, 5syl6 35 . . . . . . . . . 10 (𝐵 ⊆ On → ((𝐴𝐵𝑥𝐵) → (𝐴𝑥 ↔ ¬ 𝑥𝐴)))
76expdimp 453 . . . . . . . . 9 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (𝑥𝐵 → (𝐴𝑥 ↔ ¬ 𝑥𝐴)))
87pm5.74d 262 . . . . . . . 8 ((𝐵 ⊆ On ∧ 𝐴𝐵) → ((𝑥𝐵𝐴𝑥) ↔ (𝑥𝐵 → ¬ 𝑥𝐴)))
9 con2b 349 . . . . . . . 8 ((𝑥𝐵 → ¬ 𝑥𝐴) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
108, 9syl6bb 276 . . . . . . 7 ((𝐵 ⊆ On ∧ 𝐴𝐵) → ((𝑥𝐵𝐴𝑥) ↔ (𝑥𝐴 → ¬ 𝑥𝐵)))
1110ralbidv2 2984 . . . . . 6 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥𝐴 ¬ 𝑥𝐵))
121, 11syl5bb 272 . . . . 5 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (𝐴 𝐵 ↔ ∀𝑥𝐴 ¬ 𝑥𝐵))
1312biimprd 238 . . . 4 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (∀𝑥𝐴 ¬ 𝑥𝐵𝐴 𝐵))
1413expimpd 629 . . 3 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 𝐵))
15 intss1 4492 . . . . 5 (𝐴𝐵 𝐵𝐴)
1615a1i 11 . . . 4 (𝐵 ⊆ On → (𝐴𝐵 𝐵𝐴))
1716adantrd 484 . . 3 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐵𝐴))
1814, 17jcad 555 . 2 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → (𝐴 𝐵 𝐵𝐴)))
19 eqss 3618 . 2 (𝐴 = 𝐵 ↔ (𝐴 𝐵 𝐵𝐴))
2018, 19syl6ibr 242 1 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574   cint 4475  Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  oneqmin  7005  alephval3  8933  cfsuc  9079  alephval2  9394
  Copyright terms: Public domain W3C validator