| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con4bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bii.1 | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con4bii | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bii.1 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) | |
| 2 | notbi 309 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | mpbir 221 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 |
| This theorem is referenced by: 2false 365 2ralor 3109 gencbval 3252 snnzb 4254 raldifsnb 4325 uni0b 4463 opab0 5007 ceqsralv2 31607 tsna1 33951 |
| Copyright terms: Public domain | W3C validator |