MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uni0b Structured version   Visualization version   GIF version

Theorem uni0b 4463
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.)
Assertion
Ref Expression
uni0b ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})

Proof of Theorem uni0b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 velsn 4193 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
21ralbii 2980 . 2 (∀𝑥𝐴 𝑥 ∈ {∅} ↔ ∀𝑥𝐴 𝑥 = ∅)
3 dfss3 3592 . 2 (𝐴 ⊆ {∅} ↔ ∀𝑥𝐴 𝑥 ∈ {∅})
4 neq0 3930 . . . 4 𝐴 = ∅ ↔ ∃𝑦 𝑦 𝐴)
5 rexcom4 3225 . . . . 5 (∃𝑥𝐴𝑦 𝑦𝑥 ↔ ∃𝑦𝑥𝐴 𝑦𝑥)
6 neq0 3930 . . . . . 6 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
76rexbii 3041 . . . . 5 (∃𝑥𝐴 ¬ 𝑥 = ∅ ↔ ∃𝑥𝐴𝑦 𝑦𝑥)
8 eluni2 4440 . . . . . 6 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
98exbii 1774 . . . . 5 (∃𝑦 𝑦 𝐴 ↔ ∃𝑦𝑥𝐴 𝑦𝑥)
105, 7, 93bitr4ri 293 . . . 4 (∃𝑦 𝑦 𝐴 ↔ ∃𝑥𝐴 ¬ 𝑥 = ∅)
11 rexnal 2995 . . . 4 (∃𝑥𝐴 ¬ 𝑥 = ∅ ↔ ¬ ∀𝑥𝐴 𝑥 = ∅)
124, 10, 113bitri 286 . . 3 𝐴 = ∅ ↔ ¬ ∀𝑥𝐴 𝑥 = ∅)
1312con4bii 311 . 2 ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
142, 3, 133bitr4ri 293 1 ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  wss 3574  c0 3915  {csn 4177   cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-uni 4437
This theorem is referenced by:  uni0c  4464  uni0  4465  fin1a2lem11  9232  zornn0g  9327  0top  20787  filconn  21687  alexsubALTlem2  21852  ordcmp  32446  unisn0  39222
  Copyright terms: Public domain W3C validator