![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uni0b | Structured version Visualization version GIF version |
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
uni0b | ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4193 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
2 | 1 | ralbii 2980 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
3 | dfss3 3592 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
4 | neq0 3930 | . . . 4 ⊢ (¬ ∪ 𝐴 = ∅ ↔ ∃𝑦 𝑦 ∈ ∪ 𝐴) | |
5 | rexcom4 3225 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
6 | neq0 3930 | . . . . . 6 ⊢ (¬ 𝑥 = ∅ ↔ ∃𝑦 𝑦 ∈ 𝑥) | |
7 | 6 | rexbii 3041 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥) |
8 | eluni2 4440 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
9 | 8 | exbii 1774 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
10 | 5, 7, 9 | 3bitr4ri 293 | . . . 4 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅) |
11 | rexnal 2995 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 = ∅) | |
12 | 4, 10, 11 | 3bitri 286 | . . 3 ⊢ (¬ ∪ 𝐴 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
13 | 12 | con4bii 311 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
14 | 2, 3, 13 | 3bitr4ri 293 | 1 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 ∅c0 3915 {csn 4177 ∪ cuni 4436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-uni 4437 |
This theorem is referenced by: uni0c 4464 uni0 4465 fin1a2lem11 9232 zornn0g 9327 0top 20787 filconn 21687 alexsubALTlem2 21852 ordcmp 32446 unisn0 39222 |
Copyright terms: Public domain | W3C validator |