| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnzb | Structured version Visualization version GIF version | ||
| Description: A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.) |
| Ref | Expression |
|---|---|
| snnzb | ⊢ (𝐴 ∈ V ↔ {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc 4253 | . . 3 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 2 | df-ne 2795 | . . . 4 ⊢ ({𝐴} ≠ ∅ ↔ ¬ {𝐴} = ∅) | |
| 3 | 2 | con2bii 347 | . . 3 ⊢ ({𝐴} = ∅ ↔ ¬ {𝐴} ≠ ∅) |
| 4 | 1, 3 | bitri 264 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ ¬ {𝐴} ≠ ∅) |
| 5 | 4 | con4bii 311 | 1 ⊢ (𝐴 ∈ V ↔ {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∅c0 3915 {csn 4177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-nul 3916 df-sn 4178 |
| This theorem is referenced by: lpvtx 25963 elima4 31679 |
| Copyright terms: Public domain | W3C validator |