Proof of Theorem cover2
| Step | Hyp | Ref
| Expression |
| 1 | | ssrab2 3687 |
. . . 4
⊢ {𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐵 |
| 2 | | cover2.1 |
. . . . 5
⊢ 𝐵 ∈ V |
| 3 | 2 | elpw2 4828 |
. . . 4
⊢ ({𝑦 ∈ 𝐵 ∣ 𝜑} ∈ 𝒫 𝐵 ↔ {𝑦 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐵) |
| 4 | 1, 3 | mpbir 221 |
. . 3
⊢ {𝑦 ∈ 𝐵 ∣ 𝜑} ∈ 𝒫 𝐵 |
| 5 | | nfra1 2941 |
. . . . 5
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) |
| 6 | 1 | unissi 4461 |
. . . . . . . 8
⊢ ∪ {𝑦
∈ 𝐵 ∣ 𝜑} ⊆ ∪ 𝐵 |
| 7 | 6 | sseli 3599 |
. . . . . . 7
⊢ (𝑥 ∈ ∪ {𝑦
∈ 𝐵 ∣ 𝜑} → 𝑥 ∈ ∪ 𝐵) |
| 8 | | cover2.2 |
. . . . . . 7
⊢ 𝐴 = ∪
𝐵 |
| 9 | 7, 8 | syl6eleqr 2712 |
. . . . . 6
⊢ (𝑥 ∈ ∪ {𝑦
∈ 𝐵 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
| 10 | | rsp 2929 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) → (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑))) |
| 11 | | elunirab 4448 |
. . . . . . 7
⊢ (𝑥 ∈ ∪ {𝑦
∈ 𝐵 ∣ 𝜑} ↔ ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑)) |
| 12 | 10, 11 | syl6ibr 242 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 13 | 9, 12 | impbid2 216 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) → (𝑥 ∈ ∪ {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ 𝑥 ∈ 𝐴)) |
| 14 | 5, 13 | alrimi 2082 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 ∈ ∪ {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ 𝑥 ∈ 𝐴)) |
| 15 | | dfcleq 2616 |
. . . 4
⊢ (∪ {𝑦
∈ 𝐵 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝑥 ∈ ∪ {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ 𝑥 ∈ 𝐴)) |
| 16 | 14, 15 | sylibr 224 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) → ∪ {𝑦 ∈ 𝐵 ∣ 𝜑} = 𝐴) |
| 17 | | unieq 4444 |
. . . . . . 7
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → ∪ 𝑧 = ∪
{𝑦 ∈ 𝐵 ∣ 𝜑}) |
| 18 | 17 | eqeq1d 2624 |
. . . . . 6
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → (∪ 𝑧 = 𝐴 ↔ ∪ {𝑦 ∈ 𝐵 ∣ 𝜑} = 𝐴)) |
| 19 | 18 | anbi1d 741 |
. . . . 5
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → ((∪
𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑) ↔ (∪
{𝑦 ∈ 𝐵 ∣ 𝜑} = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑))) |
| 20 | | nfrab1 3122 |
. . . . . . . 8
⊢
Ⅎ𝑦{𝑦 ∈ 𝐵 ∣ 𝜑} |
| 21 | 20 | nfeq2 2780 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} |
| 22 | | eleq2 2690 |
. . . . . . . 8
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ {𝑦 ∈ 𝐵 ∣ 𝜑})) |
| 23 | | rabid 3116 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} ↔ (𝑦 ∈ 𝐵 ∧ 𝜑)) |
| 24 | 23 | simprbi 480 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ 𝜑} → 𝜑) |
| 25 | 22, 24 | syl6bi 243 |
. . . . . . 7
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → (𝑦 ∈ 𝑧 → 𝜑)) |
| 26 | 21, 25 | ralrimi 2957 |
. . . . . 6
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → ∀𝑦 ∈ 𝑧 𝜑) |
| 27 | 26 | biantrud 528 |
. . . . 5
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → (∪
{𝑦 ∈ 𝐵 ∣ 𝜑} = 𝐴 ↔ (∪ {𝑦 ∈ 𝐵 ∣ 𝜑} = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑))) |
| 28 | 19, 27 | bitr4d 271 |
. . . 4
⊢ (𝑧 = {𝑦 ∈ 𝐵 ∣ 𝜑} → ((∪
𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑) ↔ ∪ {𝑦 ∈ 𝐵 ∣ 𝜑} = 𝐴)) |
| 29 | 28 | rspcev 3309 |
. . 3
⊢ (({𝑦 ∈ 𝐵 ∣ 𝜑} ∈ 𝒫 𝐵 ∧ ∪ {𝑦 ∈ 𝐵 ∣ 𝜑} = 𝐴) → ∃𝑧 ∈ 𝒫 𝐵(∪ 𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑)) |
| 30 | 4, 16, 29 | sylancr 695 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) → ∃𝑧 ∈ 𝒫 𝐵(∪ 𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑)) |
| 31 | | elpwi 4168 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝒫 𝐵 → 𝑧 ⊆ 𝐵) |
| 32 | | r19.29r 3073 |
. . . . . . . . . . 11
⊢
((∃𝑦 ∈
𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦 ∈ 𝑧 𝜑) → ∃𝑦 ∈ 𝑧 (𝑥 ∈ 𝑦 ∧ 𝜑)) |
| 33 | 32 | expcom 451 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑧 𝜑 → (∃𝑦 ∈ 𝑧 𝑥 ∈ 𝑦 → ∃𝑦 ∈ 𝑧 (𝑥 ∈ 𝑦 ∧ 𝜑))) |
| 34 | | ssrexv 3667 |
. . . . . . . . . 10
⊢ (𝑧 ⊆ 𝐵 → (∃𝑦 ∈ 𝑧 (𝑥 ∈ 𝑦 ∧ 𝜑) → ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑))) |
| 35 | 33, 34 | sylan9r 690 |
. . . . . . . . 9
⊢ ((𝑧 ⊆ 𝐵 ∧ ∀𝑦 ∈ 𝑧 𝜑) → (∃𝑦 ∈ 𝑧 𝑥 ∈ 𝑦 → ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑))) |
| 36 | 31, 35 | sylan 488 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦 ∈ 𝑧 𝜑) → (∃𝑦 ∈ 𝑧 𝑥 ∈ 𝑦 → ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑))) |
| 37 | | eleq2 2690 |
. . . . . . . . . 10
⊢ (∪ 𝑧 =
𝐴 → (𝑥 ∈ ∪ 𝑧
↔ 𝑥 ∈ 𝐴)) |
| 38 | 37 | biimpar 502 |
. . . . . . . . 9
⊢ ((∪ 𝑧 =
𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪ 𝑧) |
| 39 | | eluni2 4440 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ 𝑧
↔ ∃𝑦 ∈
𝑧 𝑥 ∈ 𝑦) |
| 40 | 38, 39 | sylib 208 |
. . . . . . . 8
⊢ ((∪ 𝑧 =
𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝑧 𝑥 ∈ 𝑦) |
| 41 | 36, 40 | impel 485 |
. . . . . . 7
⊢ (((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦 ∈ 𝑧 𝜑) ∧ (∪ 𝑧 = 𝐴 ∧ 𝑥 ∈ 𝐴)) → ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑)) |
| 42 | 41 | anassrs 680 |
. . . . . 6
⊢ ((((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦 ∈ 𝑧 𝜑) ∧ ∪ 𝑧 = 𝐴) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑)) |
| 43 | 42 | ralrimiva 2966 |
. . . . 5
⊢ (((𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑦 ∈ 𝑧 𝜑) ∧ ∪ 𝑧 = 𝐴) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑)) |
| 44 | 43 | anasss 679 |
. . . 4
⊢ ((𝑧 ∈ 𝒫 𝐵 ∧ (∀𝑦 ∈ 𝑧 𝜑 ∧ ∪ 𝑧 = 𝐴)) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑)) |
| 45 | 44 | ancom2s 844 |
. . 3
⊢ ((𝑧 ∈ 𝒫 𝐵 ∧ (∪ 𝑧 =
𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑)) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑)) |
| 46 | 45 | rexlimiva 3028 |
. 2
⊢
(∃𝑧 ∈
𝒫 𝐵(∪ 𝑧 =
𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑)) |
| 47 | 30, 46 | impbii 199 |
1
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵(∪ 𝑧 = 𝐴 ∧ ∀𝑦 ∈ 𝑧 𝜑)) |