| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2623 |
. . . . 5
⊢ (𝜓 → 𝐶 = 𝐶) |
| 2 | 1 | ancli 574 |
. . . 4
⊢ (𝜓 → (𝜓 ∧ 𝐶 = 𝐶)) |
| 3 | | unirep.1 |
. . . . . 6
⊢ (𝑦 = 𝐷 → (𝜑 ↔ 𝜓)) |
| 4 | | unirep.2 |
. . . . . . 7
⊢ (𝑦 = 𝐷 → 𝐵 = 𝐶) |
| 5 | 4 | eqeq2d 2632 |
. . . . . 6
⊢ (𝑦 = 𝐷 → (𝐶 = 𝐵 ↔ 𝐶 = 𝐶)) |
| 6 | 3, 5 | anbi12d 747 |
. . . . 5
⊢ (𝑦 = 𝐷 → ((𝜑 ∧ 𝐶 = 𝐵) ↔ (𝜓 ∧ 𝐶 = 𝐶))) |
| 7 | 6 | rspcev 3309 |
. . . 4
⊢ ((𝐷 ∈ 𝐴 ∧ (𝜓 ∧ 𝐶 = 𝐶)) → ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝐶 = 𝐵)) |
| 8 | 2, 7 | sylan2 491 |
. . 3
⊢ ((𝐷 ∈ 𝐴 ∧ 𝜓) → ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝐶 = 𝐵)) |
| 9 | 8 | adantl 482 |
. 2
⊢
((∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝜓)) → ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝐶 = 𝐵)) |
| 10 | | nfcvd 2765 |
. . . . . 6
⊢ (𝐷 ∈ 𝐴 → Ⅎ𝑦𝐶) |
| 11 | 10, 4 | csbiegf 3557 |
. . . . 5
⊢ (𝐷 ∈ 𝐴 → ⦋𝐷 / 𝑦⦌𝐵 = 𝐶) |
| 12 | | unirep.5 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 13 | 12 | csbex 4793 |
. . . . 5
⊢
⦋𝐷 /
𝑦⦌𝐵 ∈ V |
| 14 | 11, 13 | syl6eqelr 2710 |
. . . 4
⊢ (𝐷 ∈ 𝐴 → 𝐶 ∈ V) |
| 15 | 14 | ad2antrl 764 |
. . 3
⊢
((∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝜓)) → 𝐶 ∈ V) |
| 16 | | eqeq1 2626 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐶 → (𝑥 = 𝐵 ↔ 𝐶 = 𝐵)) |
| 17 | 16 | anbi2d 740 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐶 → ((𝜑 ∧ 𝑥 = 𝐵) ↔ (𝜑 ∧ 𝐶 = 𝐵))) |
| 18 | 17 | rexbidv 3052 |
. . . . . . . . 9
⊢ (𝑥 = 𝐶 → (∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝐶 = 𝐵))) |
| 19 | 18 | spcegv 3294 |
. . . . . . . 8
⊢ (𝐶 ∈ V → (∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝐶 = 𝐵) → ∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵))) |
| 20 | 14, 19 | syl 17 |
. . . . . . 7
⊢ (𝐷 ∈ 𝐴 → (∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝐶 = 𝐵) → ∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵))) |
| 21 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝐷 ∈ 𝐴 ∧ 𝜓) → (∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝐶 = 𝐵) → ∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵))) |
| 22 | 8, 21 | mpd 15 |
. . . . 5
⊢ ((𝐷 ∈ 𝐴 ∧ 𝜓) → ∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵)) |
| 23 | 22 | adantl 482 |
. . . 4
⊢
((∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝜓)) → ∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵)) |
| 24 | | r19.29 3072 |
. . . . . . . 8
⊢
((∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵)) → ∃𝑦 ∈ 𝐴 (∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝜑 ∧ 𝑥 = 𝐵))) |
| 25 | | r19.29 3072 |
. . . . . . . . . . . 12
⊢
((∀𝑧 ∈
𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ ∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹)) → ∃𝑧 ∈ 𝐴 (((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝜒 ∧ 𝑤 = 𝐹))) |
| 26 | | an4 865 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 = 𝐵) ∧ (𝜒 ∧ 𝑤 = 𝐹)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝑥 = 𝐵 ∧ 𝑤 = 𝐹))) |
| 27 | | pm3.35 611 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝜒) ∧ ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹)) → 𝐵 = 𝐹) |
| 28 | | eqeq12 2635 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 = 𝐵 ∧ 𝑤 = 𝐹) → (𝑥 = 𝑤 ↔ 𝐵 = 𝐹)) |
| 29 | 27, 28 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝜒) ∧ ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹)) → ((𝑥 = 𝐵 ∧ 𝑤 = 𝐹) → 𝑥 = 𝑤)) |
| 30 | 29 | ancoms 469 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝜑 ∧ 𝜒)) → ((𝑥 = 𝐵 ∧ 𝑤 = 𝐹) → 𝑥 = 𝑤)) |
| 31 | 30 | expimpd 629 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) → (((𝜑 ∧ 𝜒) ∧ (𝑥 = 𝐵 ∧ 𝑤 = 𝐹)) → 𝑥 = 𝑤)) |
| 32 | 26, 31 | syl5bi 232 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) → (((𝜑 ∧ 𝑥 = 𝐵) ∧ (𝜒 ∧ 𝑤 = 𝐹)) → 𝑥 = 𝑤)) |
| 33 | 32 | ancomsd 470 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) → (((𝜒 ∧ 𝑤 = 𝐹) ∧ (𝜑 ∧ 𝑥 = 𝐵)) → 𝑥 = 𝑤)) |
| 34 | 33 | expdimp 453 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝜒 ∧ 𝑤 = 𝐹)) → ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝑤)) |
| 35 | 34 | rexlimivw 3029 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
𝐴 (((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝜒 ∧ 𝑤 = 𝐹)) → ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝑤)) |
| 36 | 35 | imp 445 |
. . . . . . . . . . . 12
⊢
((∃𝑧 ∈
𝐴 (((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝜒 ∧ 𝑤 = 𝐹)) ∧ (𝜑 ∧ 𝑥 = 𝐵)) → 𝑥 = 𝑤) |
| 37 | 25, 36 | sylan 488 |
. . . . . . . . . . 11
⊢
(((∀𝑧 ∈
𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ ∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹)) ∧ (𝜑 ∧ 𝑥 = 𝐵)) → 𝑥 = 𝑤) |
| 38 | 37 | an32s 846 |
. . . . . . . . . 10
⊢
(((∀𝑧 ∈
𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝜑 ∧ 𝑥 = 𝐵)) ∧ ∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹)) → 𝑥 = 𝑤) |
| 39 | 38 | ex 450 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝜑 ∧ 𝑥 = 𝐵)) → (∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹) → 𝑥 = 𝑤)) |
| 40 | 39 | rexlimivw 3029 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐴 (∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝜑 ∧ 𝑥 = 𝐵)) → (∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹) → 𝑥 = 𝑤)) |
| 41 | 24, 40 | syl 17 |
. . . . . . 7
⊢
((∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵)) → (∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹) → 𝑥 = 𝑤)) |
| 42 | 41 | expimpd 629 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) → ((∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ∧ ∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹)) → 𝑥 = 𝑤)) |
| 43 | 42 | adantr 481 |
. . . . 5
⊢
((∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝜓)) → ((∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ∧ ∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹)) → 𝑥 = 𝑤)) |
| 44 | 43 | alrimivv 1856 |
. . . 4
⊢
((∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝜓)) → ∀𝑥∀𝑤((∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ∧ ∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹)) → 𝑥 = 𝑤)) |
| 45 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑥 = 𝐵 ↔ 𝑤 = 𝐵)) |
| 46 | 45 | anbi2d 740 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → ((𝜑 ∧ 𝑥 = 𝐵) ↔ (𝜑 ∧ 𝑤 = 𝐵))) |
| 47 | 46 | rexbidv 3052 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑤 = 𝐵))) |
| 48 | | unirep.3 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) |
| 49 | | unirep.4 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → 𝐵 = 𝐹) |
| 50 | 49 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑤 = 𝐵 ↔ 𝑤 = 𝐹)) |
| 51 | 48, 50 | anbi12d 747 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((𝜑 ∧ 𝑤 = 𝐵) ↔ (𝜒 ∧ 𝑤 = 𝐹))) |
| 52 | 51 | cbvrexv 3172 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐴 (𝜑 ∧ 𝑤 = 𝐵) ↔ ∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹)) |
| 53 | 47, 52 | syl6bb 276 |
. . . . 5
⊢ (𝑥 = 𝑤 → (∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹))) |
| 54 | 53 | eu4 2518 |
. . . 4
⊢
(∃!𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ∧ ∀𝑥∀𝑤((∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ∧ ∃𝑧 ∈ 𝐴 (𝜒 ∧ 𝑤 = 𝐹)) → 𝑥 = 𝑤))) |
| 55 | 23, 44, 54 | sylanbrc 698 |
. . 3
⊢
((∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝜓)) → ∃!𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵)) |
| 56 | 18 | iota2 5877 |
. . 3
⊢ ((𝐶 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵)) → (∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝐶 = 𝐵) ↔ (℩𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵)) = 𝐶)) |
| 57 | 15, 55, 56 | syl2anc 693 |
. 2
⊢
((∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝜓)) → (∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝐶 = 𝐵) ↔ (℩𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵)) = 𝐶)) |
| 58 | 9, 57 | mpbid 222 |
1
⊢
((∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 ((𝜑 ∧ 𝜒) → 𝐵 = 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝜓)) → (℩𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵)) = 𝐶) |