| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cover2 | Structured version Visualization version Unicode version | ||
| Description: Two ways of expressing
the statement "there is a cover of |
| Ref | Expression |
|---|---|
| cover2.1 |
|
| cover2.2 |
|
| Ref | Expression |
|---|---|
| cover2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3687 |
. . . 4
| |
| 2 | cover2.1 |
. . . . 5
| |
| 3 | 2 | elpw2 4828 |
. . . 4
|
| 4 | 1, 3 | mpbir 221 |
. . 3
|
| 5 | nfra1 2941 |
. . . . 5
| |
| 6 | 1 | unissi 4461 |
. . . . . . . 8
|
| 7 | 6 | sseli 3599 |
. . . . . . 7
|
| 8 | cover2.2 |
. . . . . . 7
| |
| 9 | 7, 8 | syl6eleqr 2712 |
. . . . . 6
|
| 10 | rsp 2929 |
. . . . . . 7
| |
| 11 | elunirab 4448 |
. . . . . . 7
| |
| 12 | 10, 11 | syl6ibr 242 |
. . . . . 6
|
| 13 | 9, 12 | impbid2 216 |
. . . . 5
|
| 14 | 5, 13 | alrimi 2082 |
. . . 4
|
| 15 | dfcleq 2616 |
. . . 4
| |
| 16 | 14, 15 | sylibr 224 |
. . 3
|
| 17 | unieq 4444 |
. . . . . . 7
| |
| 18 | 17 | eqeq1d 2624 |
. . . . . 6
|
| 19 | 18 | anbi1d 741 |
. . . . 5
|
| 20 | nfrab1 3122 |
. . . . . . . 8
| |
| 21 | 20 | nfeq2 2780 |
. . . . . . 7
|
| 22 | eleq2 2690 |
. . . . . . . 8
| |
| 23 | rabid 3116 |
. . . . . . . . 9
| |
| 24 | 23 | simprbi 480 |
. . . . . . . 8
|
| 25 | 22, 24 | syl6bi 243 |
. . . . . . 7
|
| 26 | 21, 25 | ralrimi 2957 |
. . . . . 6
|
| 27 | 26 | biantrud 528 |
. . . . 5
|
| 28 | 19, 27 | bitr4d 271 |
. . . 4
|
| 29 | 28 | rspcev 3309 |
. . 3
|
| 30 | 4, 16, 29 | sylancr 695 |
. 2
|
| 31 | elpwi 4168 |
. . . . . . . . 9
| |
| 32 | r19.29r 3073 |
. . . . . . . . . . 11
| |
| 33 | 32 | expcom 451 |
. . . . . . . . . 10
|
| 34 | ssrexv 3667 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | sylan9r 690 |
. . . . . . . . 9
|
| 36 | 31, 35 | sylan 488 |
. . . . . . . 8
|
| 37 | eleq2 2690 |
. . . . . . . . . 10
| |
| 38 | 37 | biimpar 502 |
. . . . . . . . 9
|
| 39 | eluni2 4440 |
. . . . . . . . 9
| |
| 40 | 38, 39 | sylib 208 |
. . . . . . . 8
|
| 41 | 36, 40 | impel 485 |
. . . . . . 7
|
| 42 | 41 | anassrs 680 |
. . . . . 6
|
| 43 | 42 | ralrimiva 2966 |
. . . . 5
|
| 44 | 43 | anasss 679 |
. . . 4
|
| 45 | 44 | ancom2s 844 |
. . 3
|
| 46 | 45 | rexlimiva 3028 |
. 2
|
| 47 | 30, 46 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 df-uni 4437 |
| This theorem is referenced by: cover2g 33509 |
| Copyright terms: Public domain | W3C validator |