Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cover2 Structured version   Visualization version   Unicode version

Theorem cover2 33508
Description: Two ways of expressing the statement "there is a cover of  A by elements of  B such that for each set in the cover,  ph." Note that  ph and  x must be distinct. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
cover2.1  |-  B  e. 
_V
cover2.2  |-  A  = 
U. B
Assertion
Ref Expression
cover2  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  ph )  <->  E. z  e.  ~P  B ( U. z  =  A  /\  A. y  e.  z  ph ) )
Distinct variable groups:    ph, x, z   
x, B, y, z   
x, A, z
Allowed substitution hints:    ph( y)    A( y)

Proof of Theorem cover2
StepHypRef Expression
1 ssrab2 3687 . . . 4  |-  { y  e.  B  |  ph }  C_  B
2 cover2.1 . . . . 5  |-  B  e. 
_V
32elpw2 4828 . . . 4  |-  ( { y  e.  B  |  ph }  e.  ~P B  <->  { y  e.  B  |  ph }  C_  B )
41, 3mpbir 221 . . 3  |-  { y  e.  B  |  ph }  e.  ~P B
5 nfra1 2941 . . . . 5  |-  F/ x A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  ph )
61unissi 4461 . . . . . . . 8  |-  U. {
y  e.  B  |  ph }  C_  U. B
76sseli 3599 . . . . . . 7  |-  ( x  e.  U. { y  e.  B  |  ph }  ->  x  e.  U. B )
8 cover2.2 . . . . . . 7  |-  A  = 
U. B
97, 8syl6eleqr 2712 . . . . . 6  |-  ( x  e.  U. { y  e.  B  |  ph }  ->  x  e.  A
)
10 rsp 2929 . . . . . . 7  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  ph )  ->  ( x  e.  A  ->  E. y  e.  B  ( x  e.  y  /\  ph )
) )
11 elunirab 4448 . . . . . . 7  |-  ( x  e.  U. { y  e.  B  |  ph } 
<->  E. y  e.  B  ( x  e.  y  /\  ph ) )
1210, 11syl6ibr 242 . . . . . 6  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  ph )  ->  ( x  e.  A  ->  x  e. 
U. { y  e.  B  |  ph }
) )
139, 12impbid2 216 . . . . 5  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  ph )  ->  ( x  e.  U. { y  e.  B  |  ph }  <->  x  e.  A ) )
145, 13alrimi 2082 . . . 4  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  ph )  ->  A. x
( x  e.  U. { y  e.  B  |  ph }  <->  x  e.  A ) )
15 dfcleq 2616 . . . 4  |-  ( U. { y  e.  B  |  ph }  =  A  <->  A. x ( x  e. 
U. { y  e.  B  |  ph }  <->  x  e.  A ) )
1614, 15sylibr 224 . . 3  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  ph )  ->  U. { y  e.  B  |  ph }  =  A )
17 unieq 4444 . . . . . . 7  |-  ( z  =  { y  e.  B  |  ph }  ->  U. z  =  U. { y  e.  B  |  ph } )
1817eqeq1d 2624 . . . . . 6  |-  ( z  =  { y  e.  B  |  ph }  ->  ( U. z  =  A  <->  U. { y  e.  B  |  ph }  =  A ) )
1918anbi1d 741 . . . . 5  |-  ( z  =  { y  e.  B  |  ph }  ->  ( ( U. z  =  A  /\  A. y  e.  z  ph )  <->  ( U. { y  e.  B  |  ph }  =  A  /\  A. y  e.  z  ph ) ) )
20 nfrab1 3122 . . . . . . . 8  |-  F/_ y { y  e.  B  |  ph }
2120nfeq2 2780 . . . . . . 7  |-  F/ y  z  =  { y  e.  B  |  ph }
22 eleq2 2690 . . . . . . . 8  |-  ( z  =  { y  e.  B  |  ph }  ->  ( y  e.  z  <-> 
y  e.  { y  e.  B  |  ph } ) )
23 rabid 3116 . . . . . . . . 9  |-  ( y  e.  { y  e.  B  |  ph }  <->  ( y  e.  B  /\  ph ) )
2423simprbi 480 . . . . . . . 8  |-  ( y  e.  { y  e.  B  |  ph }  ->  ph )
2522, 24syl6bi 243 . . . . . . 7  |-  ( z  =  { y  e.  B  |  ph }  ->  ( y  e.  z  ->  ph ) )
2621, 25ralrimi 2957 . . . . . 6  |-  ( z  =  { y  e.  B  |  ph }  ->  A. y  e.  z 
ph )
2726biantrud 528 . . . . 5  |-  ( z  =  { y  e.  B  |  ph }  ->  ( U. { y  e.  B  |  ph }  =  A  <->  ( U. { y  e.  B  |  ph }  =  A  /\  A. y  e.  z  ph ) ) )
2819, 27bitr4d 271 . . . 4  |-  ( z  =  { y  e.  B  |  ph }  ->  ( ( U. z  =  A  /\  A. y  e.  z  ph )  <->  U. { y  e.  B  |  ph }  =  A )
)
2928rspcev 3309 . . 3  |-  ( ( { y  e.  B  |  ph }  e.  ~P B  /\  U. { y  e.  B  |  ph }  =  A )  ->  E. z  e.  ~P  B ( U. z  =  A  /\  A. y  e.  z  ph ) )
304, 16, 29sylancr 695 . 2  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  ph )  ->  E. z  e.  ~P  B ( U. z  =  A  /\  A. y  e.  z  ph ) )
31 elpwi 4168 . . . . . . . . 9  |-  ( z  e.  ~P B  -> 
z  C_  B )
32 r19.29r 3073 . . . . . . . . . . 11  |-  ( ( E. y  e.  z  x  e.  y  /\  A. y  e.  z  ph )  ->  E. y  e.  z  ( x  e.  y  /\  ph ) )
3332expcom 451 . . . . . . . . . 10  |-  ( A. y  e.  z  ph  ->  ( E. y  e.  z  x  e.  y  ->  E. y  e.  z  ( x  e.  y  /\  ph ) ) )
34 ssrexv 3667 . . . . . . . . . 10  |-  ( z 
C_  B  ->  ( E. y  e.  z 
( x  e.  y  /\  ph )  ->  E. y  e.  B  ( x  e.  y  /\  ph ) ) )
3533, 34sylan9r 690 . . . . . . . . 9  |-  ( ( z  C_  B  /\  A. y  e.  z  ph )  ->  ( E. y  e.  z  x  e.  y  ->  E. y  e.  B  ( x  e.  y  /\  ph ) ) )
3631, 35sylan 488 . . . . . . . 8  |-  ( ( z  e.  ~P B  /\  A. y  e.  z 
ph )  ->  ( E. y  e.  z  x  e.  y  ->  E. y  e.  B  ( x  e.  y  /\  ph ) ) )
37 eleq2 2690 . . . . . . . . . 10  |-  ( U. z  =  A  ->  ( x  e.  U. z  <->  x  e.  A ) )
3837biimpar 502 . . . . . . . . 9  |-  ( ( U. z  =  A  /\  x  e.  A
)  ->  x  e.  U. z )
39 eluni2 4440 . . . . . . . . 9  |-  ( x  e.  U. z  <->  E. y  e.  z  x  e.  y )
4038, 39sylib 208 . . . . . . . 8  |-  ( ( U. z  =  A  /\  x  e.  A
)  ->  E. y  e.  z  x  e.  y )
4136, 40impel 485 . . . . . . 7  |-  ( ( ( z  e.  ~P B  /\  A. y  e.  z  ph )  /\  ( U. z  =  A  /\  x  e.  A
) )  ->  E. y  e.  B  ( x  e.  y  /\  ph )
)
4241anassrs 680 . . . . . 6  |-  ( ( ( ( z  e. 
~P B  /\  A. y  e.  z  ph )  /\  U. z  =  A )  /\  x  e.  A )  ->  E. y  e.  B  ( x  e.  y  /\  ph )
)
4342ralrimiva 2966 . . . . 5  |-  ( ( ( z  e.  ~P B  /\  A. y  e.  z  ph )  /\  U. z  =  A )  ->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  ph ) )
4443anasss 679 . . . 4  |-  ( ( z  e.  ~P B  /\  ( A. y  e.  z  ph  /\  U. z  =  A )
)  ->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  ph )
)
4544ancom2s 844 . . 3  |-  ( ( z  e.  ~P B  /\  ( U. z  =  A  /\  A. y  e.  z  ph ) )  ->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  ph ) )
4645rexlimiva 3028 . 2  |-  ( E. z  e.  ~P  B
( U. z  =  A  /\  A. y  e.  z  ph )  ->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  ph ) )
4730, 46impbii 199 1  |-  ( A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  ph )  <->  E. z  e.  ~P  B ( U. z  =  A  /\  A. y  e.  z  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437
This theorem is referenced by:  cover2g  33509
  Copyright terms: Public domain W3C validator