![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > crefi | Structured version Visualization version GIF version |
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
crefi.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
crefi | ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1061 | . . 3 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐽 ∈ CovHasRef𝐴) | |
2 | simp2 1062 | . . 3 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐶 ⊆ 𝐽) | |
3 | 1, 2 | sselpwd 4807 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐶 ∈ 𝒫 𝐽) |
4 | crefi.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | iscref 29911 | . . . 4 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
6 | 5 | simprbi 480 | . . 3 ⊢ (𝐽 ∈ CovHasRef𝐴 → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
7 | 6 | 3ad2ant1 1082 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
8 | simp3 1063 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝑋 = ∪ 𝐶) | |
9 | unieq 4444 | . . . . 5 ⊢ (𝑦 = 𝐶 → ∪ 𝑦 = ∪ 𝐶) | |
10 | 9 | eqeq2d 2632 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝐶)) |
11 | breq2 4657 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑧Ref𝑦 ↔ 𝑧Ref𝐶)) | |
12 | 11 | rexbidv 3052 | . . . 4 ⊢ (𝑦 = 𝐶 → (∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶)) |
13 | 10, 12 | imbi12d 334 | . . 3 ⊢ (𝑦 = 𝐶 → ((𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦) ↔ (𝑋 = ∪ 𝐶 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶))) |
14 | 13 | rspcv 3305 | . 2 ⊢ (𝐶 ∈ 𝒫 𝐽 → (∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦) → (𝑋 = ∪ 𝐶 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶))) |
15 | 3, 7, 8, 14 | syl3c 66 | 1 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 class class class wbr 4653 Topctop 20698 Refcref 21305 CovHasRefccref 29909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-cref 29910 |
This theorem is referenced by: crefdf 29915 |
Copyright terms: Public domain | W3C validator |