Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crefi Structured version   Visualization version   GIF version

Theorem crefi 29914
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Hypothesis
Ref Expression
crefi.x 𝑋 = 𝐽
Assertion
Ref Expression
crefi ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐽   𝑧,𝐶
Allowed substitution hint:   𝑋(𝑧)

Proof of Theorem crefi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . 3 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝐽 ∈ CovHasRef𝐴)
2 simp2 1062 . . 3 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝐶𝐽)
31, 2sselpwd 4807 . 2 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝐶 ∈ 𝒫 𝐽)
4 crefi.x . . . . 5 𝑋 = 𝐽
54iscref 29911 . . . 4 (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
65simprbi 480 . . 3 (𝐽 ∈ CovHasRef𝐴 → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦))
763ad2ant1 1082 . 2 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦))
8 simp3 1063 . 2 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝑋 = 𝐶)
9 unieq 4444 . . . . 5 (𝑦 = 𝐶 𝑦 = 𝐶)
109eqeq2d 2632 . . . 4 (𝑦 = 𝐶 → (𝑋 = 𝑦𝑋 = 𝐶))
11 breq2 4657 . . . . 5 (𝑦 = 𝐶 → (𝑧Ref𝑦𝑧Ref𝐶))
1211rexbidv 3052 . . . 4 (𝑦 = 𝐶 → (∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶))
1310, 12imbi12d 334 . . 3 (𝑦 = 𝐶 → ((𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦) ↔ (𝑋 = 𝐶 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)))
1413rspcv 3305 . 2 (𝐶 ∈ 𝒫 𝐽 → (∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦) → (𝑋 = 𝐶 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)))
153, 7, 8, 14syl3c 66 1 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436   class class class wbr 4653  Topctop 20698  Refcref 21305  CovHasRefccref 29909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-cref 29910
This theorem is referenced by:  crefdf  29915
  Copyright terms: Public domain W3C validator