Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscref Structured version   Visualization version   GIF version

Theorem iscref 29911
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Hypothesis
Ref Expression
iscref.x 𝑋 = 𝐽
Assertion
Ref Expression
iscref (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐽,𝑧
Allowed substitution hints:   𝑋(𝑦,𝑧)

Proof of Theorem iscref
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 pweq 4161 . . 3 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽)
2 unieq 4444 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
3 iscref.x . . . . . 6 𝑋 = 𝐽
42, 3syl6eqr 2674 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
54eqeq1d 2624 . . . 4 (𝑗 = 𝐽 → ( 𝑗 = 𝑦𝑋 = 𝑦))
61ineq1d 3813 . . . . 5 (𝑗 = 𝐽 → (𝒫 𝑗𝐴) = (𝒫 𝐽𝐴))
76rexeqdv 3145 . . . 4 (𝑗 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦))
85, 7imbi12d 334 . . 3 (𝑗 = 𝐽 → (( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦) ↔ (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
91, 8raleqbidv 3152 . 2 (𝑗 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
10 df-cref 29910 . 2 CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦)}
119, 10elrab2 3366 1 (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573  𝒫 cpw 4158   cuni 4436   class class class wbr 4653  Topctop 20698  Refcref 21305  CovHasRefccref 29909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-cref 29910
This theorem is referenced by:  creftop  29913  crefi  29914  crefss  29916  cmpcref  29917  cmppcmp  29925  dispcmp  29926  pcmplfin  29927
  Copyright terms: Public domain W3C validator