| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > crngm23 | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| Ref | Expression |
|---|---|
| crngm.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| crngm.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| crngm.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| crngm23 | ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngm.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | crngm.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | crngm.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1, 2, 3 | crngocom 33800 | . . . 4 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
| 5 | 4 | 3adant3r1 1274 | . . 3 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
| 6 | 5 | oveq2d 6666 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻(𝐵𝐻𝐶)) = (𝐴𝐻(𝐶𝐻𝐵))) |
| 7 | crngorngo 33799 | . . 3 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | |
| 8 | 1, 2, 3 | rngoass 33705 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))) |
| 9 | 7, 8 | sylan 488 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))) |
| 10 | 1, 2, 3 | rngoass 33705 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
| 11 | 10 | 3exp2 1285 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐶 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵)))))) |
| 12 | 11 | com34 91 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐶 ∈ 𝑋 → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵)))))) |
| 13 | 12 | 3imp2 1282 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
| 14 | 7, 13 | sylan 488 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
| 15 | 6, 9, 14 | 3eqtr4d 2666 | 1 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ran crn 5115 ‘cfv 5888 (class class class)co 6650 1st c1st 7166 2nd c2nd 7167 RingOpscrngo 33693 CRingOpsccring 33792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-1st 7168 df-2nd 7169 df-rngo 33694 df-com2 33789 df-crngo 33793 |
| This theorem is referenced by: crngm4 33802 |
| Copyright terms: Public domain | W3C validator |