MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbcnvgALT Structured version   Visualization version   GIF version

Theorem csbcnvgALT 5307
Description: Move class substitution in and out of the converse of a function. Version of csbcnv 5306 with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbcnvgALT (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)

Proof of Theorem csbcnvgALT
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcbr123 4706 . . . . 5 ([𝐴 / 𝑥]𝑧𝐹𝑦𝐴 / 𝑥𝑧𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦)
2 csbconstg 3546 . . . . . 6 (𝐴𝑉𝐴 / 𝑥𝑧 = 𝑧)
3 csbconstg 3546 . . . . . 6 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
42, 3breq12d 4666 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝑧𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦𝑧𝐴 / 𝑥𝐹𝑦))
51, 4syl5bb 272 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝐹𝑦𝑧𝐴 / 𝑥𝐹𝑦))
65opabbidv 4716 . . 3 (𝐴𝑉 → {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦})
7 csbopabgALT 5009 . . 3 (𝐴𝑉𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦})
8 df-cnv 5122 . . . 4 𝐴 / 𝑥𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦}
98a1i 11 . . 3 (𝐴𝑉𝐴 / 𝑥𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦})
106, 7, 93eqtr4rd 2667 . 2 (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦})
11 df-cnv 5122 . . 3 𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦}
1211csbeq2i 3993 . 2 𝐴 / 𝑥𝐹 = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦}
1310, 12syl6eqr 2674 1 (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  [wsbc 3435  csb 3533   class class class wbr 4653  {copab 4712  ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cnv 5122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator