MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvco Structured version   Visualization version   GIF version

Theorem cnvco 5308
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvco (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exancom 1787 . . . 4 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
2 vex 3203 . . . . 5 𝑥 ∈ V
3 vex 3203 . . . . 5 𝑦 ∈ V
42, 3brco 5292 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 vex 3203 . . . . . . 7 𝑧 ∈ V
63, 5brcnv 5305 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
75, 2brcnv 5305 . . . . . 6 (𝑧𝐵𝑥𝑥𝐵𝑧)
86, 7anbi12i 733 . . . . 5 ((𝑦𝐴𝑧𝑧𝐵𝑥) ↔ (𝑧𝐴𝑦𝑥𝐵𝑧))
98exbii 1774 . . . 4 (∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
101, 4, 93bitr4i 292 . . 3 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥))
1110opabbii 4717 . 2 {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
12 df-cnv 5122 . 2 (𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦}
13 df-co 5123 . 2 (𝐵𝐴) = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
1411, 12, 133eqtr4i 2654 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wex 1704   class class class wbr 4653  {copab 4712  ccnv 5113  ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cnv 5122  df-co 5123
This theorem is referenced by:  rncoss  5386  rncoeq  5389  dmco  5643  cores2  5648  co01  5650  coi2  5652  relcnvtr  5655  dfdm2  5667  f1co  6110  cofunex2g  7131  fparlem3  7279  fparlem4  7280  supp0cosupp0  7334  imacosupp  7335  fsuppcolem  8306  relexpcnv  13775  relexpaddg  13793  cnvps  17212  gimco  17710  gsumzf1o  18313  cnco  21070  ptrescn  21442  qtopcn  21517  hmeoco  21575  cncombf  23425  deg1val  23856  fcoinver  29418  ofpreima  29465  mbfmco  30326  eulerpartlemmf  30437  cvmliftmolem1  31263  cvmlift2lem9a  31285  cvmlift2lem9  31293  mclsppslem  31480  ftc1anclem3  33487  trlcocnv  36008  tendoicl  36084  cdlemk45  36235  cononrel1  37900  cononrel2  37901  cnvtrcl0  37933  cnvtrrel  37962  relexpaddss  38010  frege131d  38056  brco2f1o  38330  brco3f1o  38331  clsneicnv  38403  neicvgnvo  38413  smfco  41009
  Copyright terms: Public domain W3C validator