MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbprcOLD Structured version   Visualization version   GIF version

Theorem csbprcOLD 3981
Description: Obsolete proof of csbprc 3980 as of 27-Aug-2021. (Contributed by NM, 17-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbprcOLD 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)

Proof of Theorem csbprcOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3534 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 sbcex 3445 . . . . . . 7 ([𝐴 / 𝑥]𝑦𝐵𝐴 ∈ V)
32con3i 150 . . . . . 6 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝑦𝐵)
43pm2.21d 118 . . . . 5 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 → ⊥))
5 falim 1498 . . . . 5 (⊥ → [𝐴 / 𝑥]𝑦𝐵)
64, 5impbid1 215 . . . 4 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 ↔ ⊥))
76abbidv 2741 . . 3 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ⊥})
8 fal 1490 . . . 4 ¬ ⊥
98abf 3978 . . 3 {𝑦 ∣ ⊥} = ∅
107, 9syl6eq 2672 . 2 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = ∅)
111, 10syl5eq 2668 1 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1483  wfal 1488  wcel 1990  {cab 2608  Vcvv 3200  [wsbc 3435  csb 3533  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator