MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbprcOLD Structured version   Visualization version   Unicode version

Theorem csbprcOLD 3981
Description: Obsolete proof of csbprc 3980 as of 27-Aug-2021. (Contributed by NM, 17-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbprcOLD  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )

Proof of Theorem csbprcOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3534 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 sbcex 3445 . . . . . . 7  |-  ( [. A  /  x ]. y  e.  B  ->  A  e. 
_V )
32con3i 150 . . . . . 6  |-  ( -.  A  e.  _V  ->  -. 
[. A  /  x ]. y  e.  B
)
43pm2.21d 118 . . . . 5  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. y  e.  B  -> F.  ) )
5 falim 1498 . . . . 5  |-  ( F. 
->  [. A  /  x ]. y  e.  B
)
64, 5impbid1 215 . . . 4  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. y  e.  B  <-> F.  ) )
76abbidv 2741 . . 3  |-  ( -.  A  e.  _V  ->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  | F.  }
)
8 fal 1490 . . . 4  |-  -. F.
98abf 3978 . . 3  |-  { y  | F.  }  =  (/)
107, 9syl6eq 2672 . 2  |-  ( -.  A  e.  _V  ->  { y  |  [. A  /  x ]. y  e.  B }  =  (/) )
111, 10syl5eq 2668 1  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483   F. wfal 1488    e. wcel 1990   {cab 2608   _Vcvv 3200   [.wsbc 3435   [_csb 3533   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator