Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbrdgg Structured version   Visualization version   GIF version

Theorem csbrdgg 33175
Description: Move class substitution in and out of the recursive function generator. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbrdgg (𝐴𝑉𝐴 / 𝑥rec(𝐹, 𝐼) = rec(𝐴 / 𝑥𝐹, 𝐴 / 𝑥𝐼))

Proof of Theorem csbrdgg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 csbrecsg 33174 . . 3 (𝐴𝑉𝐴 / 𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs(𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))))
2 csbmpt2 5011 . . . . 5 (𝐴𝑉𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ 𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
3 csbif 4138 . . . . . . 7 𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if([𝐴 / 𝑥]𝑔 = ∅, 𝐴 / 𝑥𝐼, 𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))
4 sbcg 3503 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑔 = ∅ ↔ 𝑔 = ∅))
5 csbif 4138 . . . . . . . . 9 𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if([𝐴 / 𝑥]Lim dom 𝑔, 𝐴 / 𝑥 ran 𝑔, 𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔)))
6 sbcg 3503 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]Lim dom 𝑔 ↔ Lim dom 𝑔))
7 csbconstg 3546 . . . . . . . . . 10 (𝐴𝑉𝐴 / 𝑥 ran 𝑔 = ran 𝑔)
8 csbfv12 6231 . . . . . . . . . . 11 𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔)) = (𝐴 / 𝑥𝐹𝐴 / 𝑥(𝑔 dom 𝑔))
9 csbconstg 3546 . . . . . . . . . . . 12 (𝐴𝑉𝐴 / 𝑥(𝑔 dom 𝑔) = (𝑔 dom 𝑔))
109fveq2d 6195 . . . . . . . . . . 11 (𝐴𝑉 → (𝐴 / 𝑥𝐹𝐴 / 𝑥(𝑔 dom 𝑔)) = (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))
118, 10syl5eq 2668 . . . . . . . . . 10 (𝐴𝑉𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔)) = (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))
126, 7, 11ifbieq12d 4113 . . . . . . . . 9 (𝐴𝑉 → if([𝐴 / 𝑥]Lim dom 𝑔, 𝐴 / 𝑥 ran 𝑔, 𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔))) = if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))
135, 12syl5eq 2668 . . . . . . . 8 (𝐴𝑉𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))
144, 13ifbieq2d 4111 . . . . . . 7 (𝐴𝑉 → if([𝐴 / 𝑥]𝑔 = ∅, 𝐴 / 𝑥𝐼, 𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))
153, 14syl5eq 2668 . . . . . 6 (𝐴𝑉𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))
1615mpteq2dv 4745 . . . . 5 (𝐴𝑉 → (𝑔 ∈ V ↦ 𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))))
172, 16eqtrd 2656 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))))
18 recseq 7470 . . . 4 (𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))) → recs(𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))))
1917, 18syl 17 . . 3 (𝐴𝑉 → recs(𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))))
201, 19eqtrd 2656 . 2 (𝐴𝑉𝐴 / 𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))))
21 df-rdg 7506 . . 3 rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
2221csbeq2i 3993 . 2 𝐴 / 𝑥rec(𝐹, 𝐼) = 𝐴 / 𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
23 df-rdg 7506 . 2 rec(𝐴 / 𝑥𝐹, 𝐴 / 𝑥𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))))
2420, 22, 233eqtr4g 2681 1 (𝐴𝑉𝐴 / 𝑥rec(𝐹, 𝐼) = rec(𝐴 / 𝑥𝐹, 𝐴 / 𝑥𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  [wsbc 3435  csb 3533  c0 3915  ifcif 4086   cuni 4436  cmpt 4729  dom cdm 5114  ran crn 5115  Lim wlim 5724  cfv 5888  recscrecs 7467  reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fv 5896  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  csbfinxpg  33225
  Copyright terms: Public domain W3C validator